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Abstract

The geologyGeometry library for R is designed to aid geologists in the analysis of geometric data types, such as directions,
orientations, and ellipsoids. The tools include plots, inference about population means (confidence/credible regions and
hypothesis tests), regression, etc. The library is accompanied by dozens of detailed tutorials, using dozens of natural and
synthetic data sets. This document summarizes these data types, tools, and tutorials. It also describes the installation
procedure and version history. An appendix summarizes some of the mathematics of ellipsoids.
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Figure 1: 3σ Kamb density level surface for a set of 168 slicken-
side orientations from California. See C tutorial oriKambPlots.R in
Section 3.5.

1. Overview

1.1. Summary

This R code library offers tools for dealing with several
kinds of geometric data types: directions, orientations, and
ellipsoids. For each data type, it offers several kinds of
computational and statistical tools: plotting data, infer-
ence about the population mean (confidence intervals and
hypothesis tests), regression, etc.

Most of the tools are general-purpose and applicable to
any discipline that uses such geometric data types. How-

ever, some of the high-level features are specifically de-
signed for use in structural geology. The library comes
with dozens of detailed tutorials that demonstrate (and
test) the code, and those tutorials use geologic data sets.

We have not created a graphical user interface (GUI)
for these tools. Currently the user must interact with the
library by typing R commands. However, we believe that
many geologists can get work done by mimicking the rele-
vant tutorials. And those who are motivated can learn the
basics of R in a few hours of study. Several of our tutorials
teach general R concepts and skills.

1.2. Data types

This library deals with three big categories of geometric
data: directions, orientations, and ellipsoids. A notewor-
thy concept is the number of degrees of freedom (which
equals the dimension of the underlying sample space).

Directional statistics treats rays and lines. A ray is a
line with a preferred direction. Mathematically, it can be
expressed as a unit vector. Rays describe geological data
types such as paleomagnetic directions and vorticity direc-
tions of fault slip. A line, sometimes called an axis, has no
preferred direction. Mathematically, it can be expressed
as a unit vector, with the understanding that the opposite
vector expresses the same line. Lines describe lineations,
foliation poles, fault poles, ellipsoid long axis directions,
etc. Directions have two degrees of freedom, such as trend-
plunge or strike-dip. A standard and thorough reference
is the textbook by Mardia and Jupp (2000).

Orientation statistics treats rotations and orientations
of objects in space. An orientation is more than just a
direction. For example, knowing the direction of an ellip-
soid’s short axis does not tell us the entire orientation of
that ellipsoid in space, because there is still some freedom
in how the other axes are directed. Orientations are de-
scribed as symmetric sets of rotations, in much the same
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way that a line is described as a symmetric set of two
rays. An orientation has three degrees of freedom, such as
strike-dip-rake for a foliation-lineation pair or three Euler
angles describing the orientation as a rotation.

Ellipsoid statistics deals with ellipsoids, which have six
degrees of freedom: three for orientation and three for size
and shape. In many problems the size of ellipsoids is not
practically relevant, so we normalize those ellipsoids, re-
ducing the degrees of freedom from six to five. Anisotropy
of magnetic susceptibility (AMS), finite strain, and clasts
in a host rock (as measured by X-ray computed tomogra-
phy, perhaps) are examples of ellipsoidal data in structural
geology. See Appendix A for some of the theory that we
use.

1.3. Tools

This library offers tools for several basic statistical tasks:
plotting, computing the mean and dispersion of a data set,
inference about the population mean, regression, cluster-
ing, sampling from distributions, testing uniformity, maxi-
mum likelihood estimation, etc. We explain a few of them
in greater detail now.

The library offers several common kinds of geologic
plots: equal-area hemispherical plots, Kamb contouring,
Rose plots, etc. The user can export such plots as PDFs
for use in publication. However, this library does not at-
tempt to compete on those features with other programs
such as Stereonet by Allmendinger and Cardozo or Ori-
ent by Vollmer. Rather, the library focuses on other plots
that are much less common in geology: equal-angle ro-
tation plots, equal-volume rotation plots, ellipsoid vector
plots, etc. Many of these plots are three-dimensional and
in color. They are intended primarily for interactive explo-
ration of data, rather than publication figures. However,
the user can customize them for publication and capture
them as raster images.

For each data type we offer at least one way to quan-
tify the location of a data set (the sample mean) and the
dispersion of the data (standard deviation, variance, etc.).
As the tutorials explain, these notions of mean are mathe-
matically well-behaved and thus form a reliable foundation
for more advanced techniques, such as bootstrapping.

Loosely speaking, inference is the process of extrapolat-
ing from a data set to the larger population that it rep-
resents. Confidence intervals and hypothesis tests are two
basic kinds of inference. For each data type we offer at
least one way to perform inferences about the population
mean or the difference in means between two populations.
Some of the methods are asymptotic, while others are sim-
ulational (bootstrapping, Markov chain Monte Carlo).

Similarly, for each data type we offer at least one kind of
regression, which can be used to quantify how one aspect
of the data depend on another aspect (a scalar variable,
whose values are known with certainty). Some methods
boil down to ordinary least squares. In other cases, we use
permutation tests to assess the significance of results.

Figure 2: First three dimensions of the ellipsoid vectors of 100
spheroids with uniformly random orientations. See the bonus tu-
torial ellVectors.R in Section 3.4.

1.4. Documentation

In the future, we plan to distribute this R library as an
official R package through the Comprehensive R Archive
Network (http://cran.r-project.org/). Documenta-
tion will then be provided in the standard R package for-
mat. In this release we instead rely on the following kinds
of documentation. First there are three umbrella docu-
ments:

• This readme.pdf document gives an overview of the
library’s goals, features, and installation procedure.

• The enclosed text file reference.txt is a function-
by-function reference for all parts of the library that
are intended for use by end-users. It is compiled au-
tomatically from the R source code.

• See the enclosed text file LICENSE.txt for licensing
information (Apache License 2.0).

Second, we offer dozens of concrete, friendly tutorials, or-
ganized into six categories:

• tutorialsDirections comprises four tutorials about
directional statistics. When we teach our eight-hour
short course to geologists, these tutorials serve as an
introduction to statistical concepts and R.

• tutorialsOrientations is seven tutorials forming
the core of our short course. The material is unfamil-
iar to most geologists, but the tutorials are as gentle
as possible.
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• tutorialsEllipsoids is the final part of our short
course. It begins gently and then becomes a bit
rougher. We hope to continue improving it.

• tutorialsBonus offers a variety of non-essential
demonstrations, for users who want to dig into some
of the concepts and tools more deeply.

• tutorialsC are the tutorials that require the C part
of our library. We like them, but they are few and
inessential.

• tutorialsR has little to do with geology or our li-
brary. Rather, it is a gentle introduction to the R
programming language. Have the earlier tutorials left
you wondering what lapply means? Then these tu-
torials are for you.

For more detail about the individual tutorials, see Sec-
tion 3.

2. Installation

R is a statistical software system that is rapidly gain-
ing popularity in academia and industry. The software is
made by volunteers and published at no cost to the user.
Hundreds of add-on packages are available, and the soft-
ware provides a simple mechanism for downloading and
installing them, which we will discuss later. The software
primarily uses a text interface rather than a graphical one.
Nevertheless, we have tried to make common geology tasks
easy and non-intimidating. This section describes four
steps for installing the R interpreter, some useful add-ons,
and this R code library.

2.1. R itself

R is a statistical software system that is rapidly gain-
ing popularity in academia and industry. The software is
made by volunteers and published at no cost to the user.
Hundreds of add-on packages are available, and the soft-
ware provides a simple mechanism for downloading and
installing them, which we will discuss later.

At the time of this writing, the following easy steps are
required to download and install R. (On Linux, R is also
available through several package managers.)

1. In a web browser, visit http://www.r-project.org/
and click on “download R”.

2. Choose a “mirror site” that hosts the software —
preferably near your geographical location, for speed.

3. On the mirror site, click to download a “precompiled
binary distribution” of R for your operating system.

4. Once the download is complete, run the installer pro-
gram and follow its instructions.

2.2. X-Windows (Mac only)

The Windows version of R uses the standard Windows
graphics system. The Linux version of R uses the X-
Windows system, which is present on almost all Linux sys-
tems. The Mac version of R also uses X-Windows, which
is not installed as part of the Mac operating system, but
which must be installed separately.

If you are using a Mac and you have not already installed
X-Windows, then visit http://xquartz.macosforge.

org/, download the XQuartz package, and run the in-
staller.

2.3. RStudio

When you use R, you may have many windows open at
once: the R interpreter for running R commands, a text
editor for writing programs, one or more windows for view-
ing plots, a file manager for opening files, a web browser for
viewing help files, etc. Your screen gets cluttered quickly.

The RStudio application solves this problem by provid-
ing an integrated user interface for all of these tasks. I rec-
ommend it to all R users, but it will be especially useful in
our short course, for providing a consistent user interface
across multiple operating systems.

So download and install the free desktop version of
RStudio from https://www.rstudio.com/.

2.4. Eight R packages

As I mentioned earlier, one of R’s strengths is the ease
of managing add-on packages. We need seven of them for
our short course. Here is the procedure for installation
and a little bit of testing.

1. Launch RStudio.

2. RStudio shows you a large window consisting of sev-
eral “panes”. Probably the Console pane is in the
lower left corner of the window. Copy and paste (or
retype) the following three lines of code into the Con-
sole pane, and then press Return to execute them.
install.packages(c("rgl", "fields", "MASS"))

install.packages(c("ICSNP", "expm", "FRB"))

install.packages(c("Directional", "pracma"))

These commands should cause a flurry of activity. If
you see warnings about how some package was built
with an earlier version of R, then ignore them.

3. In the Console pane again, type the following line and
press Return to execute it.
library("rgl")

This command should complete quickly and return
you to the prompt without any error messages or
other weird activity. It should be boring. Or maybe
it will show a warning about an earlier version of R;
ignore that.

4. Similarly, run each of these six commands, one at a
time. Ideally they will all be boring.
library("fields")

library("MASS")
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library("ICSNP")

library("expm")

library("FRB")

library("Directional")

library("pracma")

5. Just to feel that we have actually done something,
let’s execute one more line of code, which uses the
MASS package:
mvrnorm(1, c(0, 0), diag(c(4, 3)))

This command should produce output looking like
“[1]” followed by two smallish numbers, usually be-
tween −10 and 10. (They have been randomly gen-
erated from something called the multivariate normal
distribution.)

2.5. This R code library

You should have this readme.pdf document in a direc-
tory with the rest of the R code library: subdirectories
data, library, etc. Put this directory somewhere accessi-
ble on your computer. You should probably not alter any
of its contents, but feel free to add your own subdirectories
to organize your own data and code.

2.6. The C parts of this library

This part of the installation is not essential. Windows
users cannot do it. Linux/Unix users and Mac OS X users
can do it easily, if they have C compilers installed.

There are many computer programming languages in
the world, which fill various application niches. Roughly
speaking, higher-level languages, such as R, enable rapid
development of programs that run slowly, while lower-level
languages, such as C, require slow development of pro-
grams that run quickly. (The running speed difference is
often around a factor of 100.) A common development
strategy is to write a program in a higher-level language,
determine which parts of the program require more speed,
and then tactically rewrite those parts in a lower-level lan-
guage. For this reason, R provides a facility for invoking C
code from R, in a way that is mostly invisible to the user.
So we have coded a few performance-sensitive parts of our
library in C.

Installing the C parts of our library requires a little ex-
tra knowledge and work. The first step depends on your
operating system:

• On Windows, you are probably not able to install the
C parts at all right now. Sorry. The problem is that
they depend on POSIX functions that are not eas-
ily installed on Windows. But don’t be overly dis-
appointed. You can still use over 90% of our library
and tutorials. And the situation might improve in a
future release of our library.

• On Mac OS X, you need to have a C compiler in-
stalled. The simplest way to get one is to download
Xcode from the Mac App Store. (Warning: It’s big.)
Once the compiler is installed, you need to launch

the Terminal application, which gives you access to
a command-line shell. You need to know some basic
shell commands: pwd to print the working directory,
cd to change the working directory, etc.

• On Linux, BSD, or any other Unix-alike, you almost
certainly have C compilers installed and know how to
use a command-line shell.

The second step is to compile the shared libraries. This
must be done only once (per library version, per machine).
You don’t need to do this every time you start R. In the
command-line shell, navigate to the libraryC directory,
and enter these commands one-by-one:
R CMD SHLIB rotationsForR.c

R CMD SHLIB orientationsForR.c

The third step is to load the C parts into R’s memory.
This must be done every time you start R. The simplest
way is to enter this command into R (from the appropriate
working directory):
source("libraryC/all.R")

I have tested this procedure only on Mac OS X. Please let
me know if you run into problems.

While using C code from R, there is one other thing
to know: It is not easy for R to stop C code while it is
running. Pressing the Stop button in RStudio may not
immediately stop the program. Eventually an interface
may appear, giving you the option of killing R entirely. So
activate a C routine only if you’re sure that you want to.

3. Tutorials

This section summaries the techniques and data sets
appearing in each tutorial.

3.1. Directions

Directions come in two flavors: lines and rays. A ray is
a line with a preferred direction along that line. Examples
of line-like data include a lineation, a pole to a foliation or
fault plane, the direction of the long axis of an ellipsoid,
etc. Examples of ray-like data include a paleomagnetic
direction, a vorticity vector describing the sense of slip on
a fault, etc. A pole to a bedding plane is ray-like if the
younging direction is known or line-like if it is unknown.

Directions in 3D have two degrees of freedom. This is
a fancy way of saying that two numbers are needed to de-
scribe them. For example, a lineation might be described
using trend and plunge. A foliation might be described
using the trend and plunge of its pole or the strike and
dip of its plane. However you record them, there are two
non-redundant numbers describing the direction.

The standard textbook for this material is Mardia and
Jupp (2000). It might be more statistical than a geologist
would like, but at least many of the examples come from
the geosciences.

Structural geologists use some directional statistics fre-
quently: equal-angle and equal-area hemispherical plots,
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Figure 3: Four of the most popular analogues of the normal dis-
tribution for directions. The Fisher and Kent distributions are for
rays. The Watson and Bingham distributions are for lines, and can
be applied to rays in certain situations. The Fisher and Watson dis-
tributions are isotropic about their means. The Kent and Bingham
distributions are anisotropic.

Kamb contouring of density, Bingham statistics for lines,
etc. However, there are also many missed opportunities
in the structural geology literature. Whenever your pa-
per makes a statement such as “The faults on this side
of the syncline are differently oriented than the faults on
the other side of the syncline” or “Foliations steepen with
proximity to the shear zone”, you should try to support
those claims with statistical argumentation.

• 1oneDirection.R: Mean and dispersion. One-sample
inference, asymptotically and through bootstrapping.
Using dike directions from Cyprus.

• 2twoDirections.R: Two-sample inference, through
permutations (Wellner, 1979) and bootstrapping. Us-
ing dike directions from Cyprus.

• 3varyingDirections.R: Geodesic regression with
permutation test. Using dike directions from Cyprus.
See Fig. 4.

• 4notDirections.R: Obstacles to computing with ori-
entations as directions. Using synthetic data sets.

3.2. Orientations

An orientation is a complete description of how an ob-
ject is oriented in 3D. It is more than just a direction.
For example, if we know the direction of the long axis of
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Figure 4: Geodesic regression of 348 dike poles from Cyprus. The
poles are colored by northing, from south (red) to north (ma-
genta). The superimposed best-fit curve represents a pole rotat-
ing steadily with respect to northing. See the direction tutorial
3varyingDirections.R in Section 3.1.

an ellipsoid, then we still do not know how its other axes
are oriented. Its short axis might point in any direction
perpendicular to the long axis. That direction could be
specified using a single angle. Once it is specified, the di-
rection of the intermediate axis is determined. So we see
that three numbers, not two, are needed to specify the ori-
entation of an ellipsoid. Similarly, a foliation-lineation pair
is specified by three numbers, such as the strike and dip
of the foliation plane and the rake of the lineation within
that plane. Orientations have three degrees of freedom.

Other than ellipsoids and foliation-lineation pairs, many
geologic data types have orientations: cylindrical folds,
principal stress directions, earthquake focal mechanisms,
faults with known slip direction, crystallographic axes, etc.
Statistical tools for analyzing these orientations have been
developed and applied in numerous fields over the past four
decades. However, structural geologists have been slow to
adopt them.

Orientation statistics is connected to directional statis-
tics through a non-obvious mathematical trick (the Bing-
ham distribution on unit quaternions). Consequently the
Mardia and Jupp (2000) textbook includes some material
on orientations in its later chapters. However, that book’s
treatment is too scant to address the myriad geological
applications of this theory. We hope to publish our own
survey paper on orientation statistics in structural geology
soon.

• 1linesInPlanes.R: Line-plane pairs as rotations
with four-fold symmetry. Using foliation-lineation
pairs from Idaho and SPO ellipsoid orientations from
New Caledonia.
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Figure 5: Inferring vorticity of deformation from dispersion of crys-
tallographic orientations. See orientation tutorial 5dispersion.R in
Section 3.2. A. Equal-volume plot of 761 quartz orientations from
a single grain, with their principal geodesics. B. Equal-area lower-
hemispherical plot of the same data set, with the inferred vorticity
vector and small circles about that vector fitting the dispersed axes.
C. Adapted from Michels et al. (2015). Density contours (multiples
of uniform density, de la Vallée Poussin kernel) of vorticity vectors
inferred from 74,724 such grains.

• 2plots.R: Equal-angle and equal-volume rotation
plots. Using foliation-lineation pairs from Idaho and
synthetic data sets.

• 3otherOrientations.R: Ray-plane pairs, crystallo-
graphic orientations, and true rotations. Using slick-
enside straie from Cyprus and quartz CPO from Scot-
land.

• 4mean.R: Mean. Using foliation-lineation pairs from
Idaho and synthetic data sets.

• 5dispersion.R: Dispersion. Crystallographic vortic-
ity axis analysis. Using quartz orientations from Scot-
land and synthetic data sets. See Fig. 5.

• 6inference.R: One-sample inference through boot-
strapping. Using foliation-lineation data from Idaho.

• 7geodesicRegression.R: Geodesic regression with
permutation test. Using paleomagnetic rotations
from Cyprus and synthetic data sets.

3.3. Ellipsoids

Structural geology uses many kinds of ellipsoids: finite
strain, anisotropy of magnetic susceptibility (AMS), shape

preferred orientation (SPO), individual clasts within a host
rock, etc. Like orientation statistics, ellipsoid statistics has
been used only rarely in structural geology, even as it has
been developed and applied in related fields such as rock
magnetism.

Triaxial ellipsoids have six degrees of freedom: three for
orientation and three for size and shape. Frequently el-
lipsoids are normalized, and this normalization removes
one degree of freedom from size and shape, leaving five
degrees of freedom. The orientational degrees of freedom
are poorly behaved for spheroids and near-spheroids, and
calculating with the size-shape degrees of freedom is com-
plicated. Hence statistics with ellipsoids is difficult.

Fortunately, there is a way to recast ellipsoids as five- (if
normalized) or six-dimensional (if not) vectors, where sta-
tistical computations are quite convenient. So in practice
we convert our ellipsoids over to these vectors, compute
on those, and then convert our results back into a more
understandable format. See Appendix A for some of the
mathematical details.

• 1basics.R: Size, shape, and orientation. Basic plots.
Using spinel grains from New Caledonia and synthetic
data sets.

• 2obstacles.R: Obstacles to computing with ellip-
soids as shapes and orientations separately. Using
AMS ellipsoids from Cyprus and synthetic data sets.

• 3mean.R: Mean. Using AMS ellipsoids from Cyprus
and synthetic data sets.

• 4plottingVectors: Ellipsoid vectors and their plots.
Using AMS ellipsoids from Cyprus and synthetic data
sets.

• 5dispersion.R: Dispersion. Numerical experiments
about fabric development in rocks containing de-
formable clasts. Using SPO ellipsoids and spinel clasts
from New Caledonia, and lots of synthetic data gen-
erated from a dynamic model. See Fig. 6.

• 6inference.R: One-sample inference. Using unpub-
lished data sets of AMS and clast ellipsoids.

• 7regression.R: Regression of ellipsoid vectors. Us-
ing SPO ellipsoids from New Caledonia.

3.4. Bonus

Many of these bonus tutorials are continuations or elab-
orations of the direction, orientation, and ellipsoid exer-
cises above. We split them into this special section to
signal that they are not central to our agenda of plotting,
mean and dispersion, inference, and regression for those
three data types.

• clustering.R: DBSCAN and k-means clustering of
various data types: locations, directions, orientations,
ellipsoids. Using paleomagnetic directions and dike
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Figure 6: Development of fabric from deformable orthopyroxene clasts under monoclinic transpression. See ellipsoid tutorial 5dispersion.R
in Section 3.3. The five plots show the five measures of ellipsoid dispersion (eigenvalues of the ellipsoid vector covariance) after varying
amounts of deformation. The first column shows the first three measures; the second column shows the last two.

directions from Cyprus, slickenside orientations from
California, and SPO ellipsoids from New Caledonia.

• dirImporting.R: Loading a spreadsheet of strikes,
dips, trends, and plunges into R. Using a synthetic
data set.

• ellImporting.R: Various formats for loading spread-
sheets of ellipsoids into R.

• ellInferenceMore.R: Continuation of ellipsoid tuto-
rial 6inference.R. One-sample inference about el-

lipsoids. Using unpublished AMS and clast ellipsoid
data sets.

• ellInferencePaired.R: Paired two-sample inference
about ellipsoids. Using two SPO data sets from New
Caledonia.

• ellVectors.R: Continuation of ellipsoid tutorial
4plottingVectors.R. Using synthetic data sets.

• lineContourPlots.R: Kamb plots and user-specified
equal-area contour plots. Using dike directions from
Cyprus and synthetic data sets.
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Figure 7: Development of fabric from rigid clasts under monoclinic
transpression. See bonus tutorial oriRigidFabric.R in Section 3.4.
A. Equal-volume plot of 1,000 uniform initial orientations. B. Final
orientations after the (0,−8) transpression. C. Final orientations
after (10.25,−8) transpression. D. The landscape of homogeneous
monoclinic transpressions, with contours of λ1. E. Contours of λ2.
F. Contours of λ3 + λ4.

• oriEulerAngles.R: Theory and plots of Euler angles
behaving well and behaving badly. Using slickenside
orientations from Cyprus, quartz CPO from Scot-
land, foliation-lineation pairs from Idaho, and syn-
thetic data sets.

• oriImporting.R: Various formats for loading spread-
sheets of orientations into R.

• oriRigidFabric.R: Numerical experiments about
fabric development in rocks containing rigid clasts.
Using lots of synthetic data generated from a dynamic
model. See Fig. 7.

• oriRodrigues.R: Rodrigues plots of orientations. Us-
ing slickenside orientations from Cyprus, quartz CPO
from Scotland, foliation-lineation pairs from Idaho,
and synthetic data sets.

• outliersRandomly.R: Continuation of direction tu-
torial 4notDirections.R and ellipsoid tutorial
4plottingVectors.R. Framework for generating out-
liers undetectable in low-dimensional plots. Using
only synthetic data.

• publicationPlots.R: Adjusting and capturing plots
for publication. Using only synthetic data sets.

• rotKernelRegression.R: Kernel regression of orien-
tations. Using relative motions of the Farallon and

Pacific plates.

3.5. C

These bonus tutorials require compilation of the C part
of our library (Section 2.6). Because not all users will have
the C part installed, we keep these tutorials separate from
the other bonus tutorials.

• oriInference.R: Direct continuation of orienta-
tion exercise 6inference.R. Credible region through
Markov chain Monte Carlo simulation. Using
foliation-lineation pairs from Idaho.

• oriKambPlots.R: Kamb contours (actually, level sur-
faces) for density of orientational data. Using slicken-
side straie from California. See Fig. 1.

3.6. R

These tutorials have little to do with geology or our
library. They are instead a gentle introduction to R and
programming in general.

• 1calculator.R: R as a glorified calculator. What is
a program? Comments.

• 2memory.R: Storing values in memory. For better or
worse.

• 3numericData.R: Organizing numeric data into vec-
tors, lists, and data frames.

• 4otherData.R: Strings, logicals, matrices. Branches.

• 5loops.R: Loops. Why they are rarely used. Apply-
ing a function over a vector or list.

• 6functions.R: Writing your own functions.

After reading these brief tutorials, you might search
for some larger R guides, such as https://www.cran.

r-project.org/doc/manuals/R-intro.pdf.

4. Version history

2016/07/30: Bug fixes in the tutorials, in preparation
for the Structural Geology and Tectonics Forum 2016.

2016/04/26: Added some more directional statistics.
Now requires the Directional and pracma packages.
Sourcing library/all.R now loads all of the dependen-
cies.

2016/04/10: Essentially version 1.0. Some incompati-
bility with the earlier versions. Exercises are now called
tutorials. Includes C library, C tutorials, R tutorials, and
more bonus tutorials. More documentation.

2015/10/31: Preliminary version supporting our GSA
2015 short course. Exercises for directions, orientations,
ellipsoids, and bonus. Poor documentation.

2015/01: Preliminary versions supporting a seminar for
structural geology students at the University of Wisconsin-
Madison.

2014/11: Began porting Mathematica code to R.
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Appendix A. Ellipsoids

There are six degrees of freedom in an ellipsoid. Intu-
itively, three are wrapped up in the ellipsoid’s orientation
and three are wrapped up in its size and shape. The spe-
cific manner in which these degrees of freedom are recorded
has a significant effect on the ease of computations and
theoretical derivations.

Appendix A.1. Orientation

There are various ways to define the orientation of an
ellipsoid with three numbers. For example, one can specify
the strike and dip of the plane containing the long and in-
termediate axes, and the rake of the long axis in that plane.
Or one can specify a rotation matrix Q that rotates the
ellipsoid into to some reference orientation. Although Q
contains nine numbers, there are actually only three de-
grees of freedom, such as three Euler angles or the three
non-redundant entries in an anti-symmetric matrix that
exponentiates to Q. Similarly, one can specify the orien-
tation of an ellipsoid by specifying each of its semi-axis
directions, perhaps using trend and plunge (six numbers
total) or Cartesian coordinates (nine). In either of those

systems there are redundancies; the actual number of de-
grees of freedom is three.

The treatment of ellipsoid orientations is greatly com-
plicated when spheroids are present. A spheroid is an el-
lipsoid in which two of the axes have equal length. The
orientation of a spheroid has only two degrees of freedom,
such as the trend and plunge of the other axis. In other
words, the three degrees of freedom are not well-defined.
For ellipsoids that are nearly spheroidal, numerical cal-
culations with orientations tend to be unreliable. In the
deformable ellipsoid theory of Eshelby (1957); Bilby et al.
(1975), spheroids must be handled as a special case (Jiang,
2007; Davis et al., 2013).

For a data set in which each ellipsoid is clearly triaxial,
the orientations of the ellipsoids can be analyzed using ori-
entation statistics. For a data set consisting of spheroids,
the orientations can be analyzed using three-dimensional
directional statistics of axial data (e.g., Mardia and Jupp,
2000). For a data set consisting of a mixture of triaxial
ellipsoids and near-spheroids, neither of these approaches
is ideal. We should use techniques that simultaneously ac-
count for orientation and size-shape. Such techniques are
the major theme of this short course.

Appendix A.2. Size and shape

Similarly, the size and shape of an ellipsoid can be de-
fined using three numbers in various ways. For example,
one can specify the lengths a1, a2, a3 of the three semi-axes,
which are analogous to radii. As we shall see, geologists
are often more interested in the (natural) logarithms of
the semi-axis lengths. So let `i = log ai.

The volume V = 4π
3 a1a2a3 amounts to one degree of

freedom. Frequently, but not always, volume is geologi-
cally irrelevant, so we normalize our ellipsoids to have the
same volume as the unit sphere, meaning a1a2a3 = 1 or
equivalently `1 + `2 + `3 = 0. The remaining two degrees
of freedom describe shape, for which geologists use various
conventions.

The octahedral shear strain

Es =

√
(`1 − `2)2 + (`2 − `3)2 + (`3 − `1)2

3

is 0 for spheres and positive for other ellipsoids. Its name
derives from the situation in which a sphere is deformed to
an ellipsoid by a homogeneous deformation. If the defor-
mation is coaxial, then Es measures the amount of work
performed by the deformation (?). However, Es functions
as an abstract measure of ellipsoid shape for ellipsoids of
any provenance or meaning. In the normalized case it sim-
plifies to Es =

√
`21 + `22 + `23.

Jelinek (1981) defined

Pj = exp
√

2((`1 − `)2 + (`2 − `)2 + (`3 − `)2),

where ` = 1
3 (`1 + `2 + `3). This Pj is tantamount to Es, in

that one can be easily transformed into the other via the
relationship Pj = exp(

√
2Es).
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Assuming that the semi-axis lengths ai are sorted so
that a1 ≥ a2 ≥ a3 or equivalently `1 ≥ `2 ≥ `3, Lode’s
parameter is

ν =
2`2 − `1 − `3
`1 − `3

.

Lode’s parameter is undefined for spheres and satisfies
−1 ≤ ν ≤ 1 for other ellipsoids. The cases ν = −1, 0, 1
correspond to prolate spheroids, plane-strain ellipsoids,
and oblate spheroids, respectively. Like octahedral shear
strain, the term plane-strain derives from the study of de-
formation. Plane-strain homogeneous deformations pro-
duce finite strain ellipsoids that are plane-strain in the
sense used here.

Again assuming a1 ≥ a2 ≥ a3, Flinn’s k is defined as

k =
a1/a2 − 1

a2/a3 − 1
.

Hrouda (1982) summarizes various other measures of el-
lipsoid shape, assuming a1 ≤ a2 ≤ a3: P = (a1/a3)−2

(different from the Pj of Jelinek (1981)), L = (a1/a2)−2,
F = (a2/a3)−2, T = 2(`2 − `3)/(`1 − `3)− 1, etc.

We have expressed all of these measures of ellipsoid size-
shape in terms of the three `i or the three ai, but there
is no theoretical sense in which the `i or ai are primary.
Except for a few redundancies such as Es and Pj , any
three measures of ellipsoid size-shape can be viewed as pri-
mary, with the other measures derivable from them. For
example, suppose that we are given a volume V , octahe-
dral shear strain Es, and Lode’s parameter ν. Combining
the definitions of V and ν above yields `1 = α + β`3 and
`2 = γ + δ`3, where

α =
2

ν + 3
log

(
3V

4π

)
,

β =
ν − 3

ν + 3
,

γ =

(
1− 2

ν + 3

)
log

(
3V

4π

)
,

δ = −1− ν − 3

ν + 3
.

Then the definition of Es amounts to a`23 + b`3 + c = 0,
where

a = 2− 2β + 2β2 − 2δ − 2βδ + 2δ2,

b = −2α+ 4αβ − 2γ − 2βγ − 2αδ + 4γδ,

c = 2α2 − 2αγ + 2γ2 − 3E2
s .

This quadratic equation can be solved for `3. Each value
for `3 implies values for `1 and `2. The inequality `1 ≥ `2 ≥
`3 can then be used to select the correct final solution for
`1, `2, `3.

Appendix A.3. Ellipsoid tensors

Any ellipsoid can be described as an ellipsoid tensor E
(e.g., Flinn, 1979), also called a shape matrix (Shimamoto

and Ikeda, 1976) or inverse shape matrix (Wheeler, 1986;
Robin, 2002). The ellipsoid is the set of points x =
[x1 x2 x3]> such that x>Ex = 1. The tensor is symmet-
ric and positive-definite, and diagonalizes as E = Q>ẼQ,
where Q is a rotation matrix,

Ẽ =

 a−21 0 0
0 a−22 0
0 0 a−23

 ,
and the ai > 0. The rows of Q are unit vectors (in the
same x-coordinates) indicating the directions of the ellip-
soid semi-axes in a right-handed manner, and the ai are
the semi-axis lengths as above. The unit sphere is E = I,
the identity tensor.

As a symmetric 3× 3 tensor, an ellipsoid tensor has six
non-redundant entries, which correspond to the six degrees
of freedom in an ellipsoid. However, the orientation and
volume-shape are all mixed up in the ellipsoid tensor. For
example, the first entry of E is

E11 =
Q2

11

a21
+
Q2

21

a22
+
Q2

31

a23
.

This mixing makes ellipsoid tensors a little difficult to in-
terpret, but it’s advantageous in the long run. Orientation
and volume-shape have to be mixed up, if our tensors are
going to behave well mathematically, because they are in-
herently mixed up in the case of spheroids. For a given
spheroid, there are infinitely many valid Qs, but there is
one and only one E.

The characteristic polynomial of E is

det(E− λI) = −λ3 + (trE)λ2 − IIEλ+ detE,

where IIE = a−21 a−22 +a−22 a−23 +a−23 a−21 . The determinant
of E is tantamount to the volume:

V =
4π

3
(detE)−1/2.

The other two coefficients trE and IIE parametrize the
shape of the ellipsoid, but in a way that is difficult to
relate to other parametrizations. We return to this idea in
a later section.

Each ellipsoid is describable as one and only one
positive-definite symmetric tensor, and each positive-
definite symmetric tensor describes one and only one el-
lipsoid. Further, this one-to-one correspondence preserves
“nearness”: for example, two tensors that are slightly dif-
ferent correspond to two ellipsoids that are slightly differ-
ent. Therefore, for the purposes of mathematical calcu-
lations, we define the space of ellipsoids to be the space
of positive-definite symmetric tensors. It is a subspace of
the nine-dimensional space of all 3 × 3 tensors. It is six-
dimensional, because there are six degrees of freedom.

Unfortunately, the space of ellipsoids is not a vector
space. For example, it doesn’t contain the zero tensor 0.
You should think of the space of ellipsoids as curved. The
lack of a vector space structure greatly inconveniences our
calculations.
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Appendix A.4. Log-ellipsoid tensors

A log-ellipsoid tensor L is the matrix logarithm of an
ellipsoid tensor E. The logarithm of a matrix is not simply
the entry-by-entry logarithm of the matrix’s entries, but
it is easy to compute for ellipsoid tensors. If E = Q>ẼQ
as above, then L = logE = Q>(log Ẽ)Q, where

log Ẽ =

 −2`1 0 0
0 −2`2 0
0 0 −2`3


and `i = log ai as above. The unit sphere is L = 0. As
was true for E, the ellipsoid’s six degrees of freedom are
all mixed up in L. For example, the first entry in L is

L11 = −2(Q2
11`1 +Q2

21`2 +Q2
31`3).

The characteristic polynomial of L is

det(L− λI) = −λ3 + (trL)λ2 − IILλ+ detL,

where IIL = 4(`1`2 + `2`3 + `3`1). The three nontrivial co-
efficients of this polynomial parametrize volume and shape
in a meaningful way. First, because exp trM = det expM
for any tensor M, the trace of L is tantamount to volume:

V =
4π

3
(etrL)−1/2.

A normalized ellipsoid is one where trL = 0. Second,
for normalized ellipsoids, a little algebra shows that IIL is
tantamount to Es:

Es =

√
−1

2
IIL.

Finally, detL contains information similar to Lode’s pa-
rameter ν. To see so, assume that the ellipsoid is normal-
ized and not a sphere, and order the semi-axes in decreas-
ing order, so that `1 ≥ `2 ≥ `3. Then detL = −8`1`2`3 has
the same sign as `2 does. For oblate, plane-strain, and pro-
late ellipsoids, detL is positive, zero, and negative, respec-
tively, much like ν. However, there is no simple formula
for converting between detL and ν (without involving the
other degrees of freedom). For example, oblate spheroids
have detL = 16`31, but they all have ν = 1. By the way,
prolate spheroids have detL = 16`33. So detL can take on
any real value.

Mathematicians like symmetry, both for aesthetic rea-
sons (it’s pretty) and for practical reasons (it often helps us
simplify complicated calculations). In this case, symmetry
suggests that geologists should abandon Lode’s parameter
in favor of some version of detL. (And Flinn’s k is right
out.)

Recall that ellipsoids correspond to positive-definite
symmetric tensors. Similarly, log-ellipsoids correspond
to symmetric tensors (that are not necessarily positive-
definite). What’s new here is that symmetric tensors form
a vector space, so computations on them are compara-
tively easy. We now make the vector space structure more
explicit.

Appendix A.5. Log-ellipsoid vectors

We can arrange the six non-redundant entries of a log-
ellipsoid tensor L into a vector

l =



√
2L12√
2L13√
2L23

L11

L22

L33

 .

The
√

2 coefficients are chosen so that the dot product
on vectors corresponds to the Frobenius inner product on
tensors: If L1 and L2 are two log-ellipsoid tensors with
vectors l1 and l2, then

l1 · l2 = tr(L>1 L2).

That is, the conversion from log-ellipsoid tensors to vectors
does not distort the geometry of the space of log-ellipsoid
tensors.

For normalized ellipsoids, L contains only five non-
redundant entries, because L33 = −L11−L22 for example.
In this case we convert L to a vector l by

l =



√
2L12√
2L13√
2L23√

3
2 (L22 + L11)√
1
2 (L22 − L11)

 .

Again the weightings are chosen so that the dot product
corresponds to the Frobenius inner product.

In the end, ellipsoids are in smooth one-to-one corre-
spondence with log-ellipsoid vectors, which form a vector
space, which is a highly convenient setting for statistical
calculations. So all of our complicated calculations operate
on these vectors.

Appendix A.6. Ellipses in two dimensions

Most of the preceding discussion carries over to ellipses
in two dimensions with minor modification. There are
three degrees of freedom: orientation, area, and shape.
The orientation can be analyzed using two-dimensional di-
rectional statistics (also called circular statistics) of axial
data. The orientation is ill-defined for ellipses that are
close to circular. The area and shape are functions of the
two semi-axis lengths a1, a2 or their logarithms `1, `2.
The area A = πa1a2 is analogous to ellipsoid volume. The
shape can be expressed as an aspect ratio a1/a2 or a2/a1,
as a shape factor

B =
a21 − a22
a21 + a22

(Bretherton, 1962), etc.
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We can repackage an ellipse into an ellipse tensor

E = Q>
[
a−21 0
0 a−22

]
Q

or a log-ellipse tensor

L = logE = Q>
[
−2`1 0

0 −2`2

]
Q,

where the rows of Q are the semi-axis directions. Rota-
tions are dramatically simpler in two dimensions than in
three dimensions, so that

Q =

[
cos θ − sin θ
sin θ cos θ

]
,

where θ is the heading of the first semi-axis, measured from
the x-axis clockwise (toward the −y-axis). This angle θ is
the one degree of freedom in orientation. The characteris-
tic polynomial of L is

det(L− λI) = λ2 − (trL)λ+ detL.

The coefficient trL is tantamount to area. Normalization
means trL = 0 (or detE = 1). The coefficient detL =
4`1`2 is tantamount to shape.

Unnormalized log-ellipse tensors L can be converted to
three-dimensional vectors l by

l =

 √2L12

L11

L22

 .
Normalized L can be converted to two-dimensional

l =

[ √
2L12√
2L11

]
.

In both cases the chosen weightings preserve the Frobenius
inner product.

12


	Overview
	Summary
	Data types
	Tools
	Documentation

	Installation
	R itself
	X-Windows (Mac only)
	RStudio
	Eight R packages
	This R code library
	The C parts of this library

	Tutorials
	Directions
	Orientations
	Ellipsoids
	Bonus
	C
	R

	Version history
	References
	Ellipsoids
	Orientation
	Size and shape
	Ellipsoid tensors
	Log-ellipsoid tensors
	Log-ellipsoid vectors
	Ellipses in two dimensions


