Math/CS 240, Answers to Selected Homework Problems

1.8.25

A:Let g: A — B and f: B — C be injective functions. We wish to show
that f o g is also injective. Suppose that (f o g)(a1) = (f o g)(az) for some
a1,a2 € A. This means that f(g(a1)) = f(g(az2)). Because f is injective, it
follows that g(a1) = g(az); then the injectivity of g implies that a; = as. Thus
a1 = az whenever (fog)(a1) = (f o g)(as), and this shows f o g to be injective.

B:Let g: A — B and f: B — C be surjective functions. We wish to show
that f o g is also surjective. Let ¢ be an arbitrary element of C. Because f
is surjective, there exists some b € B such that f(b) = ¢; since g is surjective,
there exists a € A such that g(a) = b. Thus

(fog)(a) = f(g(a)) = £(b) = c.

We see that all ¢ € C are in the range of f o g; thus f o g is surjective.

2.2.24
B: We wish to show that 222 + 2 — 7 is ©(x2). To do this, it suffices to show
that 22 is O(22% + x — 7) and that 22% + x — 7 is O(z?). First, for > 3, it is
true that
0<2?<22?+2-7.

Thus, if ¥ = 3 and C = 1, we have |z?| < C|2z? + z — 7| for z > k. This
establishes that x? is O(2z? + = — 7). Second, for z > 2,
0<22?+2—7< 322

So, if k = 2 and C = 3, then 222 + z — 7| < C|#?| for x > k. Therefore
222 + 1 — 7 is O(2?). We conclude that 222 + 2 — 7 is O(2?).

2.4.25
A ¢(4) = [{1,3} =2

B. ¢(10) = |{1,3,7,9}| = 2.

C. ¢(13) = |{1,2,3,4,5,6,7,8,9,10,11,12}| = 12.

2.5.28
Let n = (aq---ao)10 = aqg10%+ - - - ag10° be a positive integer of d + 1 digits.

Let
d
de'uen = 2 \;iJ B



d—1
doda = 2 {TJ +1

these are the largest even and odd numbers, respectively, that are less than or
equal to d. Let

8:(a0+a2+"'+ad )_(a1+a3+"'adodd)‘

ceven

[ —

Because 10 =;; —1 (where “=;;” denotes congruence modulo 11), it follows
that for any nonnegative k,
107 =4, (=1)%.

In other words, 10 raised to any even power is 1, and 10 raised to any odd power
is —1. Therefore,

n = (apl0® +ax10® + - --aq,,. 10%") + (a 10" + as10® + - - - aq,,, 10%)

=1 (ap+az+---aq,., )+ (—a1 +—az+---—aq,,,)

even

= S.

Now, since n =11 s, it follows immediately that n is divisible by 11 if and only
if s is.

2.6.1.D
First we apply the Euclidean algorithm to find the greatest common divisor
of 34 and 55:

55 1-34+21,
34 = 1-21+13,
21 = 1-13+8,
13 = 1-8+5,
= 1-5+3,
= 1-3+2,
= 1-241.

Thus ged(34,55) = 1. Now we reverse the steps, in order to express 1 as an
integer linear combination of 34 and 55:

1 = 3-1-2
= 3-1-(5-1-3)
= —-1-5+2-3
= —1-5+2-(8—1-5)
= 2.8-3-5



= 2.8-3-(13-1-8)
—3-13+45-8
—3-13+5-(21—1-13)
5-21-8-13
5-21—8-(34—1-21)
~8-34+13-21
—8-34+13- (55— 1-34)
= 13.55—21-34.

Thus 1 =13 55+ —21- 34.

3.1.21

Assume that a? =, v?>. Then p|(a? — b?) = (a — b)(a + b). Because p is
prime, we conclude that p|(a — b) (in which case a =, b) or p|(a + b) (in which
case a =, —b). Thus, if a® =, b?, then a =, +b. For the converse, assume that
a =, £b. Squaring both sides, we get a? =, b?, as desired.

3.2.23
We know that Y, k = 2n(n +1). Therefore
200 200 99
k= DY k=>k
k=100 k=1 k=1
= 1200 201 199 100
) 2
= 20100 — 4950
= 15150.

3.3.36

We wish to prove that > ,_, k2¥ = (n — 1)2"*! 4+ 2 for all n > 1, using
mathematical induction. First, when n = 1, the statement reduces to 2 = 2;
thus the base step of the induction holds. Now fix n > 1, and assume that
SF_ k28 = (n — 1)27t! 4+ 2; we wish to show that 3 7F] k2F = n27t2 4 2.
Well,

n+1 n
dok2F = D k2P 4+ (n+1)27!
k=1 k=1

(n—1)2"" +2 4 (n+1)2"H
= 2n-2"t 42



= n2"t2 42

where the second equality holds due to the inductive hypothesis. This completes
the inductive step of the proof, establishing the desired result.

3.4.18
Let

11
A= [ b ] .
We wish to show, using mathematical induction, that for all n > 1,

no_ fn+1 fn
At = [ fn fn—l :|

For the base step, when n = 1, we note that

far1  fa ]:[fz fl]:[l 1]:A1
fa  fana fi fo 1 0 ’

as desired. Now assume that the statement holds for a fixed n > 1; we wish to
prove that it holds for n 4+ 1. To see that it does, notice that

ATl = A" A
_ [ fan fn',[l 1]
B | fn fn—l ] 10
— [ fn+1+fn fn+1 :|
! fn+fnfl fn
_ [ S frnr ]
| fn+1 fn |
_ | fornn fan ]
forr fogn-1 |

(Here, the second equality follows from the inductive hypothesis.) This com-
pletes the proof by induction.

4.4.28
Let n > 2 be an integer. We wish to show that (%) = 2(%) + n2.
A.Let S ={ai,...,a2,} be an arbitrary set of 2n elements. The number of

ways to choose 2 elements from S is clearly (%). On the other hand, we can write

S as the union S = S; U Sy, where Sy = {a1,...,a,} and Sy = {an41,..., 02}
have n elements each. Then there are three broad methods for choosing 2

elements from S. First, we may choose 2 elements from S;; there are (g) ways



to do this. Second, we may choose 2 elements from Sy; again there are (g) ways

to do this. Third, we may choose 1 element from each S;; by the multiplication
principle, there are (7{) (71‘) ways to do this. Each choice of 2 elements from S is

produced by one and only one of these three methods. Thus we see that

(3)= () ()= () C) =) =

B. By the definition of (') and basic algebra,

(2n)(2n — 1)
2
= 202 —n
= n2-n + n?
n(n—1) 9

= 9o -/
5 +n

n!
= 2 2
N2y "

= 2(3) +n?.

4.5.18

We wish to determine how many of strings of 20 decimal digits there are
that contain two 0s, four 1s, three 2s, one 3, two 4s, three 5s, two 7s, and three
9s. By Theorem 3 of Section 4.5, the answer is

20!
214131112131213!"

(This can be simplified, but it remains a pretty nasty number.)



