
One-Page Summary of Limits and Continuity, by Joshua R. Davis, jdavis@math.wisc.edu, 31 Dec 2003

The concept of limit is fundamental in calculus; for example, the definitions of derivative and integral
depend on it. A limit is a way of describing the behavior of a function f as its input x gets very close to a
fixed number c. The limit limx→c f(x) has value L if, no matter how close we want the graph y = f(x) to
stay to the horizontal line y = L, we can always restrict the domain of f to a small enough region of x-values
around c to make the graph stay as close to the line as we wanted. In other words, we want f(x) to stay
within a distance of ε of L — that is, we want |f(x)− L| < ε — and we are allowed to restrict ourselves to
x-values within δ of c — that is, |x− c| < δ — to make it. For the limit to be L, such a number δ must exist
for every value of ε, no matter how small.

Definition. limx→c f(x) = L if for every ε > 0 there exists a δ > 0 such that |f(x)− L| < ε for all values of
x (in the domain of f) satisfying 0 < |x− c| < δ.

Note that the definition requires 0 < |x − c|, which implies that x does not equal c. The limit is only
concerned with the behavior of the function near c, not at c. If the behaviors near c and at c agree, then the
function is said to be continuous there.

Definition. A function f is continuous at c if limx→c f(x) = f(c). (In other words, f is continuous at c if
we can compute its limit at c by just plugging c into f . Not all functions are so nice!) We say that f is
continuous if it is continuous at every point of its domain.

Intuitively, a function is continuous if its graph is unbroken, steady, predictable, etc. For example, it is
not hard to show that for any constant k, limx→c k = k; it is also true that limx→c x = c. Thus the constant
function f(x) = k and the identity function f(x) = x are continuous.

Of course, a function fails to be continuous where it is undefined and where its limit does not exist. For
example, define g(x) to be 0 for x ≤ 0 and 1 for x > 0. For this function it is useful to analyze the limit at
0 from the left and right sides independently. In general the right-hand limit limx→c+ f(x) = L if for every
ε > 0 there exists a δ > 0 such that |f(x) − L| < ε for all x satisfying 0 < x − c < δ. The left-hand limit
limx→c− f(x) is defined similarly, with −(x− c) substituted for x− c. For the full limit limx→c f(x) to exist,
the left- and right-hand limits must exist and must agree. Returning to our example, limx→0− g(x) = 0 and
limx→0+ g(x) = 1, but the full limit limx→0 g(x) does not exist, since the one-sided limits don’t agree. Since
its limit does not exist at 0, g cannot be continuous there, even though it is defined.

Theorem. Limits respect arithmetic: If limx→c f1(x) = L1 and limx→c f2(x) = L2, then
A. limx→c(f1(x) + f2(x)) = L1 + L2,
B. limx→c k · f1(x) = k · L1 for any constant k,
C. limx→c f1(x) · f2(x) = L1 · L2, and
D. limx→c f1(x)/f2(x) = L1/L2, provided L2 6= 0.

Since limx→c x is c, part C of the theorem tells us that the limit (as x → c) of x · x = x2 is c2, and part
B tells us that the limit of 3 · x2 is 3c2. Then from part A we know that the limit of 3x2 + x is 3c2 + c; that
is, 3x2 + x is continuous. By similar reasoning it is easy to prove that every polynomial is continuous.

A rational function is one that can be written as a quotient of two polynomials, such as (3x2+x)/(2x−1);
since polynomials are continuous, part D tells us that any rational function is continuous wherever its
denominator is nonzero. It is also true (but harder to prove) that the trigonometric functions sinx and cos x
are continuous; part D then tells us that tanx = sinx/ cos x is continuous wherever cos x is nonzero.

Another theorem says that the composition of any two continuous functions is continuous. For example,
since sinx and 3x2 + x are continuous, so are the compositions sin(3x2 + x) and 3(sinx)2 + sinx.

So far we have discussed limits only at a number c. We said that x was “close to c” when |x − c| was
less than some small number δ. Now, to define limits at ∞, we make x “close to ∞” by making it greater
than some large number N . For example, limx→∞ f(x) = L means that, for every ε > 0, there exists an
N > 0 such that |f(x) − L| < ε for all x > N . Similarly, limx→∞ f(x) = ∞ means that, for every M > 0,
there exists an N > 0 such that f(x) > M for all x > N . Limits at −∞ are analogous.


