MATH 206, SPRING 2007, HOMEWORK 5

REVISED 13 FEBRUARY 2007

A. Section 2.2 Problem 7.

B. The torus $T \subseteq \mathbb{R}^3$ is proved to be a regular surface in Section 2.2 Example 4, but no parametrizations are given. Find an explicit parametrization $\vec{x} : (-\pi, \pi) \times (-\pi, \pi) \to T$ that covers as much of T as possible. (Hint: Try cylindrical coordinates.) Adapt this parametrization into two more, \vec{y} and \vec{z} , such that the three parametrizations together cover T. Draw three pictures to illustrate the three parametrizations, respectively — especially noting the points that they miss.

The rest of the questions concern the following construction. Let S be the unit sphere

$$S = \{x_1^2 + x_2^2 + x_3^2 = 1\} \subseteq \mathbb{R}^3$$

and $\vec{p} = (0, 0, 1)$ its "north pole". For any point $\vec{a} = (a_1, a_2, 0)$ in the x_1 - x_2 -plane, there is a unique line L through \vec{a} and \vec{p} , and this line intersects S in exactly two points. One is \vec{p} ; call the other one \vec{b} .

Define $\vec{x}: \mathbb{R}^2 \to S \subseteq \mathbb{R}^3$ by sending (u, v) to (u, v, 0) and then sending (u, v, 0) to its corresponding \vec{b} -point on S. It's easy to see that this map \vec{x} is injective. The inverse map $\vec{x}^{-1}: S \to \mathbb{R}^2$ that sends \vec{b} to \vec{a} (and then forgets about $a_3 = 0$) is called *stereographic projection*.

This projection finds use in several different areas of mathematics and science. We will study it repeatedly this semester. The treatment here is slightly different from that of Section 2.2 #16.

C. Where does \vec{x} send (0,0)? Where does it send the *u*-axis $\{v = 0\}$, the *v*-axis $\{u = 0\}$, and the unit circle $\{u^2 + v^2 = 1\}$? Where does it send the open unit disk $\{u^2 + v^2 < 1\}$ and the open set $\{u^2 + v^2 > 1\}$? Does the image of \vec{x} completely cover S? If not, which points are left out? (At these points stereographic projection is not defined, of course.) Answer these questions and draw a detailed picture that illustrates all of them. Rigorous proofs are not required; you're just trying to explain the parametrization/projection to a classmate who doesn't understand it.

D. Prove the formula

$$\vec{x}(u,v) = \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}\right)$$

E. Prove that $x_3(u, v) \to 1$ as $|(u, v)| \to \infty$. Explain the statement The sphere is the plane with a single "point at infinity" added.

F. Compute the differential

$$d\vec{x}_{(u,v)}: T_{(u,v)}\mathbb{R}^2 \to T_{\vec{x}(u,v)}S$$

(as a 3×2 matrix, with respect to the standard bases). Simplify.

G. Prove that $d\vec{x}_{(u,v)}$ is injective. (Since \vec{x} is injective and C^{∞} , we now know that \vec{x} is a *bona fide* parametrization.)

H. Explain (in pictures and words rather than formulas) how the sphere can be covered completely by \vec{x} and one other, similar parametrization \vec{y} .