
Math 206, Spring 2007, Computer Lab 1
(Revised 4 February 2007)

1. Introduction

This lab introduces you to the mathematical software package Mathe-
matica. The goals are modest; I just want you to see that it can help with
common tasks in differential geometry, such as

• visualizing curves and surfaces in R3,
• automating tedious algebraic computations, and
• making numerical approximations when necessary.

Later labs will build on the skills here, and you are also welcome to use Math-
ematica on your other assignments. Although no mathematician should rely
on computers, no mathematician should forgo them entirely, either.

Mathematica is accessible in all public computer labs on campus, such as
the one on the bottom floor of the Teer building (where the math, physics,
and engineering library is). This lab is designed for use with version 5.1
or 5.2 of the software. You’re welcome to do these labs in some other,
comparable system, such as Maple, if you clear it with me well ahead of
time.

2. Using the Software

Unless you are already quite familiar with Mathematica, I recommend
that you type in all of the examples in this lab. You should also play
around, trying variations of your own.

When you start up Mathematica, you are presented with a notebook.
This is a place to enter computations, see the results, type comments or
explanations, construct larger programs in pieces, etc. A notebook consists
of a sequence of cells. Each cell has a definite purpose: input, output,
explanatory text, etc. First, try typing

2 + 3
and hitting Enter (or Shift-Enter, on some systems). Mathematica reformats
this entry as an input cell, passes the input to its kernel (computational en-
gine), receives an answer back from the kernel, and displays the answer in an
output cell. Interactive programs like this are commonly called interpreters
or read-eval-print loops. At this point, your notebook should show an input
cell and its subsequent output cell:

In[1]:= 2 + 3
Out[1]= 5

Here’s another command to try:
D[t^3 + 2 t + 1, t]

It produces
In[2]:= D[t^3 + 2 t + 1, t]
Out[2]= 2 + 3 t^2

1

2

As I’m sure you’ve figured out, the D function takes in two arguments — a
function and a variable — and symbolically differentiates the function with
respect to the variable. If you like, you can store the answer in a variable of
your choosing. Try this:

myfunc = D[t^3 + 2 t + 1, t]
With the answer stored in a variable, you can subsequently use it whenever
and however you want. If you just want to see the answer again, enter

myfunc
If you want to antidifferentiate it, enter

Integrate[myfunc, t]
All of Mathematica’s built-in functions and constants have names begin-

ning with upper-case letters, as in D, Integrate, Pi, ParametricPlot, etc.
When naming your own variables, always begin with lower-case letters, as
in myfunc, a, curvatureNormal, to avoid confusion.

Of course, you can save your Mathematica notebook to a file on your
computer whenever you want, and then open it later and resume work.
When you resume, your cells are not automatically run for you; you have
to hit Enter (or Shift-Enter) in each cell to activate it. You can even have
multiple notebooks open at the same time, activating commands from any
of them as you like.

There’s one key point to understand here: All notebooks connect to the
same kernel. The notebooks are not isolated from each other. If you enter
a = 13 in one notebook, close that notebook, open up some other notebook
and enter a in it, then Mathematica will report that a is 13.

Storing values in variables is extremely helpful when building your own
functions and programs (as we do later in this lab). Unfortunately, it can
sometimes cause confusion. For example, enter the following two commands.
By the way, you can enter them into one cell, if you like; Mathematica will
deal with them in order.

t = 3
D[t^3 + 2 t + 1, t]

Mathematica reports an error. If t = 3, then t3+2t+1 = 34, so it thinks that
you’re trying to differentiate the function 34. That in itself isn’t a problem.
The problem is that you’re differentiating with respect to 3, since t = 3, and
that doesn’t make any sense. This is not a defect in Mathematica. It’s just
an example of a computer taking what you say literally.

This is an important point to remember, especially if you haven’t done
much programming before: Computers are entirely literal and not nearly as
smart as you are. They are incapable of judgment. You have to tell them
exactly what you want, as if talking to a four-year old (who just happens to
know hundreds of math functions).

If Mathematica ever behaves strangely and you can’t figure out what’s
wrong with it, there’s a good chance that there are variables with set values
that you’ve forgottten about. Try saving your work, quitting the program,

3

restarting it, and running exactly the cells you want again. (Restarting is a
heavy-handed solution, but I’m trying to keep things simple here.)

3. The Mathematica Language

So you know how to use the Mathematica interpreter and user interface.
Now let’s talk a little more about the language itself.

The good news is that Mathematica syntax is extremely simple. In fact,
everything in Mathematica can be written in the form f [x1, x2, . . . , xn],
where f is some function and the xi are inputs to it. To a math student
this should look reasonable. (The square brackets [] are used instead of
parentheses () because parentheses are used for too many other things.) For
example, 2 + 3 is really represented as Plus[2, 3] inside Mathematica;
the former is just a handy formatting convention to help the human user.

Lists occur frequently in Mathematica; for instance, they’re used to rep-
resent row vectors. A list can be entered using curly braces, like this list of
my five favorite numbers:

faves = {0, 1, I, E, Pi}
The curly braces, like the + symbol above, are really a formatting shortcut
for humans. To see what that list really looks like to Mathematica, enter

FullForm[faves]
It tells you that lists are really constructed using the List function, and
that complex numbers are constructed using the Complex function. Notice
that these functions are nested inside one another — in other words, they
are composed, just as functions in math are composed.

To obtain numerical approximations, use the N function:
N[Pi]
N[faves]

Notice that N is happy to take in a single number or a list of numbers. Many
Mathematica functions automatically handle lists like this. Here is how you
pick off the first element in the list:

faves[[1]]
What is the result of the following command?

(faves[[3]])^2
In math, matrices are essentially vectors of vectors (all of the same di-

mension). Mathematica knows this. Try
a = {{1, 2, 0}, {-1, 2, 1}, {1, 1, 1}}
MatrixForm[a]
Det[a]
a.a

Now let’s do something more interesting — namely, have Mathematica gen-
erate the formula for a 2× 2 determinant with entries a, b, c, d, regarded as
variables. There is a problem here, since we’ve already set the variable a to
a particular value. To fix that, clear the value in a using the command

Clear[a]

4

Then enter
matrix = {{a, b}, {c, d}}
Det[matrix]

You should get ad − bc, which is the formula for the determinant. At this
point, if you enter

c = 1
Det[matrix]

then Mathematica will output ad− b. It’s using the known value for c, but
it’s manipulating the other variables formally, since it doesn’t have values
for them.

It’s important to understand the distinction between Mathematica vari-
ables and mathematical variables. The former are used to store values (this
happens in all programming languages) whereas the latter exist precisely to
avoid specifying a particular value. If anything, Mathematica variables are
really more like mathematical constants, although you’re allowed to redefine
these constants whenever you want.

To get an idea of why we care about such nitpicking formalities, try
func = t^3 + 2 t + 1
func[2]

I’m trying to evaluate the function t3 + 2t + 1 on the value 2. It seems rea-
sonable, right? But Mathematica doesn’t understand what I mean, because
it regards t^3 + 2 t + 1 as a formula — a string of symbols to be ma-
nipulated formally — and unlike humans it doesn’t automatically recognize
that the formula represents a function — a sequence of operations to be
performed on numbers. If you want, you can work around this by entering

func /. t -> 2
This says, “Give me the formula func, but with all occurrences of t replaced
with 2.” Mathematica replaces t with 2 in func and automatically simplifies
the resulting formula, down to the very simple formula 13.

To define your own function in Mathematica, try this instead:
betterfunc[t_] := t^3 + 2 t + 1
betterfunc[2]

The underscore _ on the left-hand side is highly significant. It tells Math-
ematica that you are defining a pattern. After you establish this pattern,
whenever Mathematica encounters an expression of the form betterfunc[...]
it will automatically replace it with t^3 + 2 t + 1 and then replace all oc-
currences of t with whatever ... is (using the same /., -> mechanism as
above, in fact). When you define a function in Mathematica, you’re really
defining a pattern for formula manipulation. Deep in its guts, all Mathe-
matica ever does is manipulate formulas and simplify them for you.

If you want to learn more about Mathematica, you can read references
and tutorials on the web by searching for “Mathematica documentation”.
Also, you can look up any function in Mathematica’s Help menu. Our goal
here isn’t to master the software, but just to use it for differential geometry.

5

4. Visualizing Curves

In this section we draw some curves. Try entering
ParametricPlot[{Cos[t], Sin[t]}, {t, 0, 2 Pi}]

This plots the R2-valued function ~α(t) = (cos t, sin t) for values of t from
0 to 2π. If you click on the plot, then a rectangle should appear around
it. You can make the plot larger or smaller by dragging the corners of the
rectangle.

If your Mathematica is like mine, it inexplicably plots with different scales
on x and y axes, so that the trace looks like a non-circular ellipse (it should
be a circle). To fix it, try this:

ParametricPlot[{Cos[t], Sin[t]}, {t, 0, 2 Pi}, AspectRatio -> 1]
That extra bit at the end is called an option in Mathematica; it’s an op-
tional argument to the ParametricPlot function that lets you control the
relationship between the x and y scales. Many functions can be used in var-
ious ways with various arguments and options; you can look up any function
in the Help menu.

For our next example, try the helix ~α(t) = (cos t, sin t, t):
ParametricPlot3D[{Cos[t], Sin[t], t}, {t, 0, 4 Pi}]

To view it from a different angle, try the ViewPoint option:
ParametricPlot3D[{Cos[t], Sin[t], t}, {t, 0, 4 Pi}, ViewPoint->{2, 3, -2}]

A more interesting curve, that is more difficult to draw by hand, is the
twisted cubic ~α(t) = (t3, t2, t):

ParametricPlot3D[{t^3, t^2, t}, {t, -1, 1}, ViewPoint->{2, 2, 0}]
You can change the viewpoint as before, but unfortunately the picture is

always static. I wish that Mathematica’s 3D drawing facilities were more
interactive, so that you could rotate the 3D picture by dragging it with
your mouse, for example. The good news is that there are several free
software packages available for this; if you’re using Mathematica on your own
computer, you can search the web for “Mathematica rotate 3D”, download
one or two to your computer, and try them out. To my knowledge, Duke’s
computers don’t have any of them.

So instead we’ll settle for animating the 3D image in a non-interactive
way. Enter the following commands, all in one cell if you like — they will
be executed in order. Make sure to get the quotation marks right; there are
double-quotes " and left-quotes ‘ (the latter is probably above the Tab key
on your keyboard).

Needs["Graphics‘Animation‘"]
plot = ParametricPlot3D[{t^3, t^2, t}, {t, -1, 1}];
SpinShow[plot]

The first command loads a special library or package for animating graphics.
The second command stores our plot into a variable plot (yes, even graphics
can be stored in variables). The semicolon at the end means that although
you want the command to be carried out, you don’t want Mathematica to
show you the output. The third command creates more plots by spinning the

6

first one around in 3D. You can look at the rotated plots one after another,
or you can animate them, as follows.

Look on the right-hand side of your notebook. There should be a bunch of
long, square brackets that indicate how all of the cells in your notebook are
grouped together. For example, input cells are usually grouped with their
corresponding output cells. You can select one or more cells by dragging the
mouse along their brackets (with the button held down).

Right now, select all of the cells that contain the rotated plots generated
by SpinShow. Then go to the Cell menu and choose Animate Selected
Graphics. This produces an animation in the spot where the first of the
rotated plots used to be. To stop the animation, just click on it.

You can read about other Mathematica animation commands by searching
the web for “Mathematica animation”. They all follow this same system of
“generate a list of images, select them, then do Cell: Animate Selected
Graphics to animate them”.

By the way, using packages such as Graphics‘Animation‘ can sometimes
lead to bizarre variable conflicts. You must activate Needs["Graphics‘Animation‘"]
before you activate a command from it, such as SpinShow. If you ac-
cidentally activate SpinShow first, then Mathematica thinks you want to
define your own variable called SpinShow, and then it won’t even load
Graphics‘Animation‘ properly after that, so you have to restart Math-
ematica and try again.

5. Symbolic Computation

In this section we use Mathematica for symbolic computation. Let’s begin
by entering some handy functions for dealing with curves.

normSquared[vector_] := Dot[vector, vector];
norm[vector_] := Sqrt[normSquared[vector]];
ddt[curve_] := D[curve, t];
speed[curve_] := norm[ddt[curve]];
tangent[curve_] := (1 / speed[curve]) * ddt[curve];
curvatureNormal[curve_] := (1 / (normSquared[ddt[curve]])^2) *

Cross[Cross[ddt[curve], ddt[ddt[curve]]], ddt[curve]];
curvature[curve_] := norm[curvatureNormal[curve]];
normal[curve_] := (1 / curvature[curve]) * curvatureNormal[curve];
binormal[curve_] := Cross[tangent[curve], normal[curve]];
torsion[curve_] := -(1 / normSquared[Cross[ddt[curve], ddt[ddt[curve]]]])

* Det[{ddt[curve], ddt[ddt[curve]], ddt[ddt[ddt[curve]]]}];

All I’m doing here is translating standard math formulas into Mathematica
syntax. For example, the first function takes in a vector and dots it with
itself, producing the square of the norm of the vector. The second function
gives the norm of the vector. There’s actually a built-in Norm function
— which is why Mathematica warns you that the name norm is similar
to a preexisting one — but Norm uses a lot of unnecessary absolute value

7

functions, so I prefer this one. The other functions are identical or similar
to ones in your book or homework. Make sure you understand how each
is defined; it’s basically a matter of being very careful about parentheses ()
and brackets [], and using built-in functions like Cross that you can look up
in the Help menu. Notice that these formulas do not assume that curve is
parametrized by arc length.

Now, in another cell, enter
alpha[t_] := {3 Cos[t], 3 Sin[t], 0};
Simplify[tangent[alpha[t]]]
Simplify[normal[alpha[t]]]
Simplify[binormal[alpha[t]]]
Simplify[speed[alpha[t]]]
Simplify[curvature[alpha[t]]]
Simplify[torsion[alpha[t]]]

The Simplify function used here does a pretty good job of simplifying
complicated algebra. You should recognize this curve ~α(t). Verify all of the
output to make sure that it’s right.

Now let’s graph the curvature and torsion of the twisted cubic.
alpha[t_] := {t^3, t^2, t};
k = curvature[alpha[t]];
ParametricPlot[{t, k}, {t, -2, 2}]
tau = torsion[alpha[t]];
ParametricPlot[{t, tau}, {t, -2, 2}]

Finally, let’s use the NIntegrate function to numerically approximate the
arc length of the graph of the sine function:

alpha[t_] := {t, Sin[t], 0};
v = speed[alpha[t]];
arcLength = NIntegrate[v, {t, 0, 2 Pi}]

Having a computer crank through tedious arithmetic and algebra for you
is wonderful. On the other hand, the computer doesn’t show you how it ar-
rives at its answer, and the answer might not be in the form most convenient
for your purposes. (Mathematica actually provides methods for customiz-
ing its symbolic algorithms, but they’re way beyond the scope of this lab.)
Furthermore, doing a calculation by hand often helps you understand and
remember whatever it is that you’re studying. I urge you to exercise judg-
ment in using this tool; use a computer for calculations only if you’re sure
that you could do them yourself.

6. Numerical Approximation

In this section we’ll explore the fundamental theorem of the local theory
of curves, which says that for any prescribed curvature k(s) and torsion τ(s)
there’s a curve ~x(s) = (x1(s), x2(s), x3(s)) with that curvature and torsion.
(Do Carmo denotes the curve ~α(s), but let’s use ~x(s) instead, to save typing.)

8

Recall that this boils down to solving the Frenet equations

t′
1(s) = k(s)n1(s),

t′
2(s) = k(s)n2(s),

t′
3(s) = k(s)n3(s),

n′
1(s) = −k(s)t1(s)− τ(s)b1(s),

n′
2(s) = −k(s)t2(s)− τ(s)b2(s),

n′
3(s) = −k(s)t3(s)− τ(s)b3(s),

b′
1(s) = τ(s)n1(s),

b′
2(s) = τ(s)n2(s),

b′
3(s) = τ(s)n3(s),

subject to the desired initial conditions. Let’s use the initial conditions

~x(0) = (0, 0, 0),
~t(0) = (1, 0, 0),
~n(0) = (0, 1, 0),
~b(0) = (0, 0, 1).

Let’s also throw in these three equations, so that the relevance to ~x is clear:

x′
1(s) = t1(s),

x′
2(s) = t2(s),

x′
3(s) = t3(s).

The solution is always possible in theory but often difficult in practice. This
sort of problem is ripe for numerical approximation. So let’s translate the
problem into Mathematica notation. For the domain of ~x(s) we’ll take the
open interval from start to end. Now type all of the following code into a
single cell — but don’t run it yet.

Needs["Graphics‘Animation‘"]
Clear[x1, x2, x3,

t1, t2, t3,
n1, n2, n3,
b1, b2, b3,
k, tau, s, start, end]

k[s] = ...;
tau[s] = ...;
start = ...;
end = ...;
funcs = {x1[s], x2[s], x3[s],

t1[s], t2[s], t3[s],
n1[s], n2[s], n3[s],
b1[s], b2[s], b3[s]}

eqns = {x1’[s] == t1[s], x2’[s] == t2[s], x3’[s] == t3[s],

9

t1’[s] == k[s] n1[s],
t2’[s] == k[s] n2[s],
t3’[s] == k[s] n3[s],
n1’[s] == -k[s] t1[s] - tau[s] b1[s],
n2’[s] == -k[s] t2[s] - tau[s] b2[s],
n3’[s] == -k[s] t3[s] - tau[s] b3[s],
b1’[s] == tau[s] n1[s],
b2’[s] == tau[s] n2[s],
b3’[s] == tau[s] n3[s]}

initconds = {x1[0] == 0, x2[0] == 0, x3[0] == 0,
t1[0] == 1, t2[0] == 0, t3[0] == 0,
n1[0] == 0, n2[0] == 1, n3[0] == 0,
b1[0] == 0, b2[0] == 0, b3[0] == 1}

solns = NDSolve[Join[eqns, initconds], funcs, {s, start, end}]
alpha = {x1[s], x2[s], x3[s]} /. solns[[1]]
plot = ParametricPlot3D[alpha, {s, start, end}];
SpinShow[plot]

Let’s take a moment to get an idea of what this program does. It begins
by clearing out all of the relevant variable names, just to be safe. Then
there’s a little section for specifying k[s], tau[s], start, and end; you’re
going to customize those items in a moment, before you actually run the
thing. Then there are the names of the functions for which we’re solving
in the ODE. Notice that k(s) and τ(s) are not among them, because we’re
specifying these, not solving for them. Then comes the system of equations,
followed by the initial conditions.

In the next line, we join the equations and initial conditions together into
one list of equations, since that’s how Mathematica wants them. We invoke
Mathematica’s numerical differential equation solver NDSolve, telling it all
of the equations, all of the functions to find, and the independent variable
and its interval.

As you will see in a moment (but not yet, because we haven’t specified
k(s), etc.), the output from the NDSolve command is a bit cryptic. It’s a list
consisting of one item. That one item is a list of functions that numerically
approximate the solutions of the ODE, implemented in Mathematica code.
Since they’re ugly and complicated, Mathematica won’t bother to show them
to you, but we don’t care. All we want to do is pick off solutions[[1]],
which is the list of functions, and then use those functions to construct a
curve. That’s what we do in the third-to-last line. We make a vector-valued
function consisting of x1, x2, and x3, but replacing (using the syntax /.
mentioned above) each of those functions with its solution function from
NDSolve. We call this new curve alpha, in honor of do Carmo (and to avoid
confusion with the x1, x2, x3 named above).

In the second-to-last line, we plot the thing, using the same start and end
as was used to construct the solution. We end with a semicolon to suppress

10

the output; you may want to add more semicolons, earlier in the program,
to suppress other outputs. I care only about the final output, which is an
animatable sequence of pictures using our old friend SpinShow.

Now that we understand the program, we are ready to have some fun by
choosing various values for k[s], tau[s], start, and end and seeing what
kind of curves we get.

(1) First there’s the classic k[s] = 1, tau[s] = 0, start = -Pi, end = Pi.
If you enter these values into the program above and evaluate the
cell, what do you get? By the way, what property is shared by all
curves that have τ(s) ≡ 0?

(2) Next try k[s] = 1, tau[s] = 1, start = -10, end = 10. Try chang-
ing k and τ to other constants, and see how that affects the shape.

(3) Try k[s] = s, tau[s] = 1, start = -10, end = 10. Try changing
τ to 1/10, k to 2s, etc. Now we’re getting into more interesting
curves, and they really respond to changes in the parameters.

(4) Try k[s] = s, tau[s] = Sin[s], start = -10, end = 10.
(5) Try k[s] = ArcTan[s], tau[s] = Sin[s], start = -10, end = 10.

Okay, you get the idea. By the way, don’t forget to change start and
end, too. By making them asymmetric you can get asymmetric pictures,
even when your functions exhibit symmetry. Due to the way the program
specifies initial conditions, 0 must always be in your interval, but you can
always shift the interval by replacing s with s + 5, say, in k(s) and τ(s).

7. Troubleshooting

If your code is not working, even though you’ve checked it a few times:

(1) Save your notebook, quit Mathematica, reopen your notebook, and
run just the cells that you want. This resets all of your variables, so
it often clears up problems. It’s also possible that Mathematica has
bugs that restarting mitigates; I can’t vouch for that.

(2) If you are entering many lines of code in one cell, then don’t. Run
each line individually, in its own cell, so that you can more easily see
which lines generate which error messages.

If these still don’t help, then send me e-mail containing the following.

(1) The first error message that Mathematica generates — or, if it
doesn’t generate any error messages but you know that the results
are wrong, then send me the results and an explanation of why
they’re wrong.

(2) All of the code that you’ve run up to the point where that first error
message happens. This should be as little code as possible — just
the stuff required for the current computation, that you’ve run since
restarting Mathematica.

11

8. Assignment

Future labs will assume that you’ve done everything in this lab, making a
serious attempt to understand how all of the code works. However, I don’t
want you to hand in every little thing we’ve done. Just hand in these wrap-
up questions, separately from your other homework for the week. You can
either print your code and plots or you can carefully hand-copy them.

8.1. Local Invariants of Curves. Let ~α(t) = (t, sin t, 0) and ~β(t) = ~α(t)+
~n(t), where ~n is the unit normal vector to ~α. Using the ParametricPlot3D
command and the Show command (which you can look up in the Help menu),
plot ~α and ~β together on one plot. If your Mathematica is just like mine,
then the plot is not quite right, for an understandable reason. Hand in a
hand-corrected plot, along with a graph of the curvature of ~α.

(By the way, plotting ~α and ~α + k~n, instead of ~α and ~α + ~n, produces a
pretty picture for this ~α.)

(By another way, doing this with ~α(t) = (t, t sin t, 0) produces an inter-
esting ~β curve. Its curvature is so complicated that my Mathematica had
trouble graphing it.)

8.2. Motion Under Gravity. Suppose that a comet (or planet) of mass
m is traveling along a path ~α(t) and comes near a star of mass M fixed
at the origin. There is an attractive gravitational force ~F between them of
magnitude

|~F | = GMm

r2
,

according to Newton’s law of gravitation, where G is a positive constant.
Newton’s second law of motion says that the force on the comet relates to
its acceleration ~α′′ by

~F = m~α′′.

(We assume that m is negligible compared to M , so that the star is unac-
celerated by the force; this is why we can fix it at the origin.)

A. Prove, on paper, that the acceleration of the comet is

~α′′(t) = − GM

|~α(t)|3
~α(t).

B. Assume for simplicity that GM = 2, and plot the solution curve for
the differential equation from Part A, with initial conditions
x1[0] == 1, x2[0] == 0, x3[0] == 0,
x1’[0] == 0, x2’[0] == 1, x3’[0] == 0

following the numerical differential equation solution example above. Notice
that you’ll have to use second derivatives, as in x’’[t] == You should
generate enough of the plot to convince yourself (and me) that it’s an ellipse
with the sun at one focus (as was known to Kepler in 1605, supposedly after
he tried 40 other curves — geniuses work hard). Hand in a plot and your
Mathematica code.

12

8.3. Prescribing Curvature and Torsion. Going back to our numerical
solutions of the Frenet equations, find your own parameters k[s], tau[s],
start, and end that produce an interesting curve — the more interesting,
the better. Hand in a plot of your curve from a viewpoint that shows how
exciting it is, along with the parameters that produced it.

8.4. Time Spent. Please tell me how many hours you spent on this lab
altogether. The answer does not affect your grade.

