
MATH 206, SPRING 2007, COMPUTER LAB 2

JOSHUA R. DAVIS

1. Introduction

This lab assumes all of the material from our first lab; you may need to go
back and review. Here we learn a little more Mathematica, namely how to
add explanatory text to our notebooks. Then we plot parametric surfaces.
Then we use Mathematica’s symbolic capabilities to automatically compute
all of those pesky quantities such as d~x⊤d~x, ∂~x/∂u × ∂~x/∂v, etc. At the
end there are a few exercises to hand in (separately from your homework).

2. Writing Better Mathematica Notebooks

So far we’ve used only two kinds of cells in our Mathematica notebooks,
namely input and output. These are the cells that do all of the work. But
once you’ve done enough computations in Mathematica, your notebooks
tend to get filled with a lot these little cells, some important and some not,
some related to others and some not, etc. We need to keep our notebooks
clean and understandable, in case we ever need to go back and use them
again. So I’ve listed some suggestions here.

• Group related commands together in a single cell, so the reader
understands that they’re related.

• After you’ve figured out your problem, delete all unnecessary com-
mands such as scratch work. Don’t delete any essential commands,
such as those that generate intermediate results used by later com-
mands. But if you don’t care about these intermediate results, then
end the commands with a semicolon ; to suppress the output. You
want to show your reader only the important stuff.

• Add text cells to explain what the Mathematica code means, how
to use it, and what the output means. To add a text cell, just click
the part of your notebook where you want to add the cell, go to the
Format menu, go to its Style submenu, and select the Text style.
When you do this, you notice that there are many styles to choose
from; you can put in titles to demarcate sections and subsections,
etc.

By following these suggestions, you can create a clean, self-explanatory note-
book suitable for reading by others — a polished document, not just a collec-
tion of mysterious calculations. There are two ways that you might present
the polished document to me (or your pals):

1

2 JOSHUA R. DAVIS

• You could work out all of the calculations, clean everything up, write
your explanatory text, delete all of the output cells, and e-mail the
notebook to me. Then I could open the notebook in Mathematica,
evaluating the input cells for myself and seeing the output that they
produce.

• Instead of e-mailing the notebook to me for me to run, you could
go through the notebook and run it yourself, and then print out the
whole thing, including the inputs, the outputs, and the explanations,
on paper.

We will be using the second method in this lab. That is, I want you to
submit your report on paper. More instructions can be found in the final
section.

3. Visualizing Surfaces

In the first lab we plotted curves. Now we’re going to plot surfaces. For
starters, consider the torus of major radius a and minor radius r that you
parametrized on a recent homework assignment. Your parametrization was
probably something like this:

Clear[a, r];

torus[u_, v_] := {(a + r Cos[u]) Cos[v],

(a + r Cos[u]) Sin[v],

r Sin[u]};

(Notice that I clear a and r so that I’m sure they don’t have any wacky values
left over from previous computations. Also remember that when you define
a function in Mathematica, the arguments must appear with underscores
on the left-hand side.) We can plot the torus for (u, v) ∈ (−π, π) × (−π, π)
using the same ParametricPlot3D command we used for curves; the only
difference for surfaces is that there are two parameters, u and v:

a = 2;

r = 1;

ParametricPlot3D[torus[u, v], {u, -Pi, Pi}, {v, -Pi, Pi}]

This should give you a nice torus. Notice that Mathematica draws the
surface by taking a rectangular mesh in the u-v-plane and mapping that
mesh into R

3. For our purposes this is fantastic! It gives us a visual sense
of how the parametrization distorts the shape and size of little rectangles,
which is exactly the area distortion phenomenon that we’ve discussed in
class. In this case, the rectangles along the “inner rim” of the torus are
pretty small, and those around the “outer rim” are pretty big. Later in the
lab, we’ll compute the area distortion factor to corroborate this picture.

The torus we’ve drawn is actually a little too nice, because the plot in-
cludes the values u = ±π and v = ±π. To visualize the points on the torus
that are missed when we don’t include these values, try something like

b = Pi - 0.1;

ParametricPlot3D[torus[u, v], {u, -b, b}, {v, -b, b}]

MATH 206, SPRING 2007, COMPUTER LAB 2 3

As we saw on the homework, you need three such charts to cover the whole
torus. I got my other two by phase-shifting u and v by 2π/3:

ParametricPlot3D[torus[u + 2 Pi / 3, v + 2 Pi / 3],

{u, -b, b}, {v, -b, b}]

ParametricPlot3D[torus[u + 4 Pi / 3, v + 4 Pi / 3],

{u, -b, b}, {v, -b, b}]

Enough of the torus. Let’s do stereographic projection:

stereo[u_, v_] := {(2 u)/(u^2 + v^2 + 1),

(2 v)/(u^2 + v^2 + 1),

(u^2 + v^2 - 1)/(u^2 + v^2 + 1)};

We can plot this on the square (u, v) ∈ [−1, 1] × [−1, 1] using the following
command. (The PlotRange option explicitly declares that the graph is con-
tained in the box [−1, 1] × [−1, 1] × [−1, 1] in R

3. When we do animations
in a moment, this will help the individual plots line up correctly.)

a = 1;

ParametricPlot3D[stereo[u, v], {u, -a, a}, {v, -a, a},

PlotRange -> {{-1, 1}, {-1, 1}, {-1, 1}}]

By changing the value of a you can see more or less of the sphere. Instead of
doing this by hand, let’s make Mathematica’s Graphics‘Animation‘ pack-
age animate the process for us. The following commands generate a bunch
of plots, with a running from 0.5 to 3.5 in increments of 0.1. Remember
that to animate these plots, you first select them all, and then you go to the
Cell menu and choose Animate Selected Graphics.

Clear[a];

Needs["Graphics‘Animation‘"];

Animate[ParametricPlot3D[stereo[u, v], {u, -a, a}, {v, -a, a},

PlotRange -> {{-1, 1}, {-1, 1}, {-1, 1}}],

{a, 0.5, 3.5, 0.1}]

As a gets bigger and bigger, the parametrization covers more and more of
the sphere. Notice that the little rectangles making up the sphere become
quite small as you wander up to the north pole.

If you want help on the Animate command, I don’t think you’ll find it
in Mathematica’s help browser; instead, search the web for “Mathematica
animation”.

4. Symbolic Computation

Perhaps you are aware that computing quantities like d~x⊤d~x by hand
is instructive but tedious. Once you’re comfortable doing it by hand, just
make Mathematica do it. Here are some functions to help you.

Clear[u, v];

Clear[normSquared, norm, jacobian, jacTJac, areaDistortion];

normSquared[vector_] := Dot[vector, vector];

norm[vector_] := Sqrt[normSquared[vector]];

4 JOSHUA R. DAVIS

jacobian[param_] := Transpose[{D[param, u], D[param, v]}];

jacTJac[param_] := Transpose[jacobian[param]].jacobian[param];

areaDistortion[param_] := norm[Cross[D[param, u], D[param, v]]];

Notice that I’m calling d~x the Jacobian, since that is the proper terminology.
(The Jacobian is the matrix of partial derivatives, while d~x is the linear
transformation it represents in the standard basis.)

These commands produce the area distortion factor for the torus parametriza-
tion defined above:

Clear[a, r, u, v];

Simplify[areaDistortion[torus[u, v]]]

Mathematica gives me an answer of
√

r2(a + r cos u)2. Assuming that a > r
(because otherwise the torus intersects itself in nasty ways), we can simplify
the answer to r(a+ r cos u). Notice that for u ∈ (−π, π), the area distortion
is largest at u = 0, which corresponds to the outer rim of the torus, and
smallest as u → ±π, which corresponds to the inner rim of the torus. This
explains why, in the torus plot we did earlier, the rectangular mesh was large
along the outer rim and small along the inner rim.

Similarly, computing the area distortion factor for the stereo parametriza-
tion shows that the area gets small as (u, v) gets farther away from (0, 0).
Try it yourself. This corroborates the plot of stereo that we did earlier.

5. The Assignment

Don’t hand in any of the work done above. Just hand in the stuff in this
section, in a polished form. I mean polished in the sense of Section 2. There
shouldn’t be anything unnecessary; outputs that I don’t care about should
be suppressed using semicolons; related commands should probably be put
together into a single cell; before and/or after each such group of commands,
you should add a text cell to explain the commands and/or the output.

You might want to work everything out in one notebook, make a copy,
and edit that copy down to be handed in.

5.1. Southern Hemisphere. Earlier in the lab we plotted a big chunk
of the unit sphere using the stereo parametrization. Now, use this same
parametrization to plot exactly the southern hemisphere of the sphere —
no more, no less. Do this not by changing the definition of stereo, but by
changing the arguments to stereo when it is used in the ParametricPlot3D
command. If you do it as I expect you to, then the mesh that Mathematica
draws on the surface will be different from the one it drew earlier for (u, v) ∈
(−1, 1) × (−1, 1).

Hand in the Mathematica code, the plot, and a brief description (in a
text cell) of how the mesh is different from the one before.

5.2. Area Distortion. In the areaDistortion function above, we com-
pute the area distortion factor as |∂~x/∂u × ∂~x/∂v|. In class we discussed
another way to write it. This other way uses d~x⊤d~x, which is computed

MATH 206, SPRING 2007, COMPUTER LAB 2 5

by the function jacTJac above. Define a new Mathematica function called
areaDistortionNew that computes the area distortion factor using jacTJac.
Check that your new function produces the same results as areaDistortion
for the torus and stereo parametrizations.

Hand in the Mathematica code for your areaDistortionNew.

5.3. Unit Normal. Write a function normal that takes in a parametriza-

tion param and outputs the unit normal vector ~N determined by that parametriza-
tion (by crossing ∂~x/∂u and ∂~x/∂v and normalizing). Test your function
on stereo using this command:

Simplify[normal[stereo]]

The simplification might not go as far as you like. Explain why the normal
really is the inward-pointing unit normal to the sphere.

Hand in the code for your normal function and the explanation. (You
may write the explanation by hand, if you like; alternatively, you can type
it in a text cell, if it doesn’t require a lot of mathematical notation.)

5.4. Differential of the Gauss Map of the Torus. Any parametrization

~x induces a unit normal field ~N as in the preceding exercise, and this is

essentially the Gauss map. We can understand its differential d ~N by its
effect on the basis {∂~x/∂u, ∂~x/∂v}. As we’ve discussed in class,

d ~N
(

∂~x

∂u

)

= ∂

∂u
~N := ∂

∂u

(

~N ◦ ~x
)

,

d ~N
(

∂~x

∂v

)

= ∂

∂v
~N := ∂

∂v

(

~N ◦ ~x
)

.

Using the torus parametrization, the function normal from the preceding
exercise, and a little differentiation, compute these six quantities for the
torus in Mathematica:

~N, d ~N

(

∂~x

∂u

)

, d ~N

(

∂~x

∂v

)

,

〈

~N, d ~N

(

∂~x

∂u

)〉

,

〈

d ~N

(

∂~x

∂u

)

, d ~N

(

∂~x

∂v

)〉

,

〈

d ~N

(

∂~x

∂v

)

, ~N

〉

.

Simplify each one using Simplify. The three dot products should simplify
to 0.

Hand in the Mathematica commands needed for all of this, along with
their simplified output. Also explain in a text cell why the first and third
dot products should be zero. (We’ll discuss the behavior of the second dot
product later.)

