Name:

I have adhered to the Duke Community Standard.
Signature:

Math 31L 03-04 Fall 2006 Exam 2
Instructions: You have 60 minutes. You may use your TI-83 or equivalent calculator. Always show all of your work. Partial credit is often awarded. Pictures are often helpful. Give simplified answers, as exact as possible. Put a box around each answer. Ask questions if any problem is unclear. Good luck.

1. Compute

$$
\lim _{x \rightarrow 0} \frac{x}{\arctan x}
$$

2. We have studied the differential equations

$$
\begin{align*}
d A / d t & =-k_{1} A+k_{2} B \tag{1}\\
d B / d t & =k_{1} A-k_{2} B \tag{2}
\end{align*}
$$

where k_{1} and k_{2} are positive constants. In this problem, assume that $d A / d t$ is always positive, as well. To answer the following questions, you do not need to solve the differential equations.
A. Show that $d B / d t$ is always negative.
B. Differentiate Equation (1) and show that the second derivative $\frac{d^{2} A}{d t^{2}}$ is always negative.
C. At what time $t \geq 0$ is A increasing fastest?
D. Sketch the graph of $d A / d t$, as a function of t.
3. Suppose that the engine in an automobile burns 1 liter of fuel per hour just to keep itself running (even when the automobile is not moving). When the automobile is going $v \mathrm{~km} / \mathrm{h}$, the engine burns an additional $0.001 v^{2}$ liters per hour to maintain that speed.

I need to drive 750 km , and I'd like to use as little fuel as possible. By the way, I never exceed the speed limit, which is $90 \mathrm{~km} / \mathrm{h}$.
A. If I drive at speed v, how many liters of fuel do I burn on my trip? Give your answer as a function $f(v)$. (Hint: How many hours long is the drive?)
B. We are going to minimize $f(v)$ on what closed, bounded interval?
C. Find the global minimum.
4. An object of mass m is moving around; its position at time t is given by

$$
x(t)=A \cos \left(\sqrt{\frac{k}{m}} t\right)+B \sin \left(\sqrt{\frac{k}{m}} t\right)
$$

where A, B, and k are positive constants.
A. Show that x satisfies the differential equation $x^{\prime \prime}=-\frac{k}{m} x$.
B. Using the differential equation from Part A, find a simple expression for the force F that must be acting on the object, in terms of x.
C. In this part only, assume $B=0$. At what time t is the force greatest?
5. A water tank is in the shape of a cone, with its tip pointing down. Its height is 10 meters and its top radius is 8 meters. Water is flowing into the tank at 0.1 cubic meters per minute and also leaking out at a rate of $0.001 h^{2}$ cubic meters per minute, where h is the depth of the water of the tank in meters. Let v be the volume of the water in the tank.
A. What is $d v / d t$, in terms of h ?
B. What is $d v / d h$, in terms of h ?
C. Does the tank ever overflow? Explain.
6. Recall that $\cot x=\cos x / \sin x$. Even if you have the answers to this problem memorized, you must still show how they are derived.
A. Find the derivative of $\cot x$.
B. Find the derivative of $\operatorname{arccot} x$. Simplify as much as possible.

