
Some Important Inequalities Math 354, Winter 2008

Triangle Inequality: For all real a and b, |a + b| ≤ |a|+ |b|.

Inverse Triangle Inequality: For all real a and b, |a− b| ≥ ||a| − |b||.

Proof. By the triangle inequality,

|a| = |a− b + b| ≤ |a− b|+ |b| ⇒ |a− b| ≥ |a| − |b|.

Symmetrically,

|b| = |b− a + a| ≤ |b− a|+ |a| ⇒ |b− a| ≥ |b| − |a|.

But |b− a| = |a− b|, so |a− b| is greater than or equal to both |a| − |b| and |b| − |a|.

Convexity of ex: For all real a and b and all t ∈ [0, 1],

eta+(1−t)b ≤ tea + (1− t)eb.

Proof Sketch. Let

f(x) =
eb − ea

b− a
(x− a) + ea

be the line through (a, ea) and (b, eb). Notice that ta + (1− t)b is in [a, b], and that

ex ≤ f(x) on [a, b], since y = ex is convex (meaning concave-up). Thus

eta+(1−t)b ≤ f(ta + (1− t)b) = tea + (1− t)eb.

Young’s Inequality: Let p, q > 1 be real such that 1
p + 1

q = 1. Then for all real a and b,

ab ≤ 1
p
ap +

1
q
bq.

Proof. Let t = 1
p , so that 1− t = 1

q . Then, using the convexity of ex,

ab = elog a+log b = e
1
p

log ap+ 1
q

log bq

≤ 1
p
elog ap

+
1
q
elog bq

=
1
p
ap +

1
q
bq.

Cauchy’s Inequality: For all real a and b,

ab ≤ a2

2
+

b2

2
.

Proof. This is the special case of Young’s Inequality with p = q = 2. It is also easy

to prove directly: 0 ≤ (a− b)2 = a2 − 2ab + b2 ⇒ 2ab ≤ a2 + b2.
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The following inequalities concern the `p-norms of vectors a = (a1, . . . , an) ∈ Rn. In partic-

ular, Minkowski’s inequality is the triangle inequality for the `p-norm. All sums
∑

are taken

over an index i running from 1 to n.

Discrete Hölder’s Inequality: Let p, q > 1 be real such that 1
p + 1

q = 1. Then for all a, b ∈ Rn,

∑
|aibi| ≤

(∑
|ai|p

)1/p (∑
|bi|q

)1/q
.

Proof. Let A = (
∑
|ai|p)1/p and B = (

∑
|bi|q)1/q. Then, using Young’s inequality

and the triangle inequality,∑
|aibi|
AB

=
∑∣∣∣∣ai

A

bi

B

∣∣∣∣ ≤∑∣∣∣∣1p (ai

A

)p
+

1
q

(
bi

B

)q∣∣∣∣ ≤∑∣∣∣∣1p (ai

A

)p
∣∣∣∣+
∑∣∣∣∣1q

(
bi

B

)q∣∣∣∣ .
This simplifies to

1
pAp

∑
|ai|p +

1
qBq

∑
|bi|q =

1
p

∑
|ai|p

Ap
+

1
q

∑
|bi|q

Bq
=

1
p

+
1
q

= 1.

Thus
∑
|aibi| = AB, as desired.

Discrete Minkowski’s Inequality: Let p > 1 be real. Then for all a, b ∈ Rn,(∑
|ai + bi|p

)1/p
≤
(∑

|ai|p
)1/p

+
(∑

|bi|p
)1/p

.

Proof. By the triangle inequality,∑
|ai + bi|p ≤

∑
(|ai|+ |bi|) |ai + bi|p−1 =

∑
|ai||ai + bi|p−1 +

∑
|bi||ai + bi|p−1.

Applying the discrete Hölder’s inequality with q = p
p−1 (so that 1

p + 1
q = 1) to the

first term on the right-hand side rewrites it as(∑
|ai|p

)1/p (∑(
|ai + bi|p−1

) p
p−1

) p−1
p =

(∑
|ai|p

)1/p (∑
|ai + bi|p

) p−1
p

.

Do the same to the other term and combine the results. Then the inequality is∑
|ai + bi|p ≤

((∑
|ai|p

)1/p
+
(∑

|bi|p
)1/p

)(∑
|ai + bi|p

) p−1
p

.

Divide through by (
∑
|ai + bi|p)

p−1
p to obtain the result.

These results also hold for p = 1 and “q = ∞”, by ad hoc arguments. They also hold if

we replace the vectors a, b with (appropriate) functions f , g and the sums
∑

with integrals∫ d
c . . . dx. They are then statements about Lp-norms on vector spaces of functions, which are

studied in courses in functional analysis.
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