
Exam 1 Answers CS 201, Fall 2008

1. To refresh your memory, UnorderedList has methods isEmpty(), length(), add(), search(),

and remove(), in addition to the constructor. In our implementation from class we had to re-

compute the length every time the user asked for it, which was inefficient. Eric came up with

the idea of keeping track of the length as items were added and removed from the list; then we

could just return the current length whenever asked.

A. Write a subclass of UnorderedList called FasterUnorderedList that uses Eric’s sugges-

tion. (If you subclass well, then you do not need to write much code.)

Answer:

from linkedlist import *

class FasterUnorderedList(UnorderedList):

def __init__(self):

UnorderedList.__init__(self)

self.count = 0

def length(self):

return self.count

def add(self,item):

UnorderedList.add(self, item)

self.count += 1

def remove(self,item):

UnorderedList.remove(self, item)

self.count -= 1

[Remark: self.count cannot be called self.length, because that would conflict with the

length() method.]

B. How would the abstract data type (ADT) specification for FasterUnorderedList differ

from that for UnorderedList?

Answer: The two ADT specs are identical. UnorderedList and FasterUnorderedList re-

spond to exactly the same methods. The only difference between the classes is that FasterUnorderedList

uses slightly more memory (to store self.count) and performs length() in time O(1) instead

of O(n). Such issues of memory and time efficiency are not part of the ADT spec.

2. A counterintuitive aspect of the radix sort we’ve studied is that it sorts by digits from right

to left, even though the left-most digits are the most significant. To correct this “defect” I

1

Exam 1 Answers CS 201, Fall 2008

altered the code — only a few lines needed changing — to sort by digit left-to-right instead

of right-to-left. (To understand this, it is helpful to assume that all numbers are of the same

length; i.e. shorter numbers have leading 0s.) Here is its output:

unsorted:

[32, 127, 5, 3456, 6, 1, 99, 245]

sorting...

[32, 127, 5, 6, 1, 99, 245, 3456]

[32, 5, 6, 1, 99, 127, 245, 3456]

[5, 6, 1, 127, 32, 245, 3456, 99]

[1, 32, 5, 245, 6, 3456, 127, 99]

sorted:

[1, 32, 5, 245, 6, 3456, 127, 99]

Is this thing working as I described? Why don’t I end up with a sorted list? Why does the

standard radix sort start with the least significant digits? Discuss.

Answer: Yes, it is working as I described, but clearly the left-to-right algorithm is wrong.

The left-to-right algorithm essentially sorts by the 1s digit, breaking ties using the 10s digit,

breaking those ties using the 100s digit, and so on. In contrast, the usual right-to-left algorithm

sorts by 1000s digit (say), breaks ties using the 100s digit, breaks those ties using the 10s digit,

and breaks those ties using the 1s digit; this produces the correct sorted order. To put it another

way, on each iteration the radix sort the list is resorted, with the results of the previous iteration

partially overridden. By sorting right-to-left, the more significant digits are able to override the

less significant digits, as desired.

3. The Collatz function is defined recursively by the following Python code. In the right margin

of this page, from the bottom of the page up, draw the call stack for collatz(6) when it is at

its deepest. On the rest of this page, write an iterative version of collatz().

def collatz(n):

if n == 1:

return n

else:

if n % 2 == 0:

return collatz(n / 2)

else:

return collatz(3 * n + 1)

Answer: The iterative version is

2

Exam 1 Answers CS 201, Fall 2008

def collatz(n):

while n != 1:

if n % 2 == 0:

n = n / 2

else:

n = 3 * n + 1

return n

The call stack for collatz(6) at its deepest is

collatz(1)

collatz(2)

collatz(4)

collatz(8)

collatz(16)

collatz(5)

collatz(10)

collatz(3)

collatz(6)

[Remark: The only value that the Collatz function can ever return is 1, so a simpler implemen-

tation would be

def collatz(n):

return 1

However, this assumes that the original collatz() function always terminates. In fact, it is not

currently known whether the Collatz function terminates for all positive n. Experiments show

that it terminates for all n less than about 1018, but little is known beyond that.]

4. In our radix sort function we used the Python operator %, which computes the remainder

when one integer is divided by another. For example, 3456 % 100 returns 56, 25 % 4 returns

1, and 36 % 6 returns 0. In this problem you will write this remainder function yourself. Let’s

just call it remainder(). It takes in two positive integers a and b, and returns the remainder

for a divided by b. So remainder(25, 4) returns 1. One approach is to repeatedly subtract 4

from 25 until you have the remainder; how do you know when that is?

A. Write an iterative version of remainder() that uses this repeated subtraction idea.

Answer:

def remainder(a, b):

3

Exam 1 Answers CS 201, Fall 2008

while a >= b:

a = a - b

return a

B. Write a recursive version of remainder() that uses repeated subtraction.

Answer:

def remainder(a, b):

if a < b:

return a

else:

return remainder(a - b, b)

C. Describe the running time of either function using big-O notation.

Answer: The number of subtractions involved is exactly ba/bc, which is approximately a/b.

(To be precise, a/b− 1 < ba/bc ≤ a/b.) Therefore the algorithm is O(a/b).

5. We’ve discussed using queues for scheduling jobs on a printer and tasks on a processor. In

Real Life situations we don’t always want all tasks to be scheduled fairly; we want the ability

to specify that some jobs have priority over others, so that they get handled first. (Jobs that

have equal priority should be handled in a FIFO manner.) Let us assume that every item that

will be put in our queue responds to a priority() message that returns its assigned priority

(an integer, say). So, given an item item, its priority is item.priority().

Write enqueue() and dequeue() for this new kind of queue. Also describe the complexity

of your enqueue() and dequeue() using big-O notation.

Answer: I will only show enqueue(); dequeue() (and all other methods) are identical to

those in Queue, given this enqueue().

class PriorityQueue():

def enqueue(self, item):

Scan through the list until we reach a high-priority item, or the end.

i = 0

while i < self.length() and item.priority() > self.items[i].priority():

i += 1

if i == self.length():

We reached the end; just append.

self.items.append(item)

else:

i is the index of the higher-priority item; insert behind it.

self.items.insert(i, item)

4

Exam 1 Answers CS 201, Fall 2008

[Remark: Because almost all of the methods are identical to our usual Queue class, I was tempted

to write a subclass. However, the subclass would not have access to the queue’s underlying list,

and I want access. So I had to write a new class from scratch.]

The algorithm scans through the list. If the list has n items, then this scan takes time O(n).

Additionally, the algorithm has to perform an append() or insert(); I don’t remember whether

those are O(1) or O(n) in Python, but even if they are O(n) they still don’t take any more time

than the scan. So the algorithm is O(n) overall.

5

