
Exam 2 Answers CS 254, Spring 2009

0. Here is a context-free grammar for our calculator language. The start symbol is S.

Intuitively, S generates statements, E expressions, O operators, F floating-point constants, and

I integer constants. V generates all variables — that is, strings of non-operator, non-parenthesis

symbols that cannot be interpreted as numbers, either because they are a single period, have

too many periods, or have non-digit characters among the periods.

S → V = E | E

E → (E) | EOE | V | F | I

O → + | ∗ | ˆ | − | /

F → .I | I. | I.I

I → D | DI

D → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

V → . | B.B.B | BCB

B → ε | .B | DB | CB

C → any terminal symbol other than +, ∗, ˆ , −, /, (,), ., and the ten digits

In the grammar above I have ignored white space altogether. We can account for white space

by altering a few productions and introducing nonterminals to generate strings of white space

symbols.

S → ZV Z = ZEZ | ZEZ

E → Z(ZEZ)Z | ZEY OY EZ | ZV Z | ZFZ

C → any terminal other than +, ∗, ˆ , −, /, (,), ., the digits, and white space

Z → ε | Y

Y → W |WY

W → any white space symbol

1. Let A be a regular language over Σ. Then there exists a regular expression α that matches

A (and nothing else). We wish to produce a context-free grammar Gα that generates the same

language A. We proceed by structural induction on α. The base cases are easy; I’ll leave them

to you. There are three inductive cases: α = β + γ, α = βγ, and α = β∗.

Assume that α = β + γ and that Gβ and Gγ are CFGs that describe the languages cor-

responding to β and γ. (This is the inductive hypothesis.) There is a standard procedure for

producing a CFG that generates the union L(Gβ) ∪ L(Gγ). (This was done on homework; I’m

happy to fill in details in person.) This union CFG generates the language of α = β + γ.

1

Exam 2 Answers CS 254, Spring 2009

Similarly, assume that α = βγ; there is a standard procedure, done on homework, for

constructing a CFG for α from those for β and γ.

Finally, assume that α = β∗, where Gβ is a CFG that generates the language of β. Let Sβ
be the start symbol of Gβ. Let Sα be any symbol that does not occur in the nonterminal and

terminal alphabets of Gβ. Construct a CFG by adding to Gβ the production

Sα → ε | SβSα;

the start symbol of this CFG is Sα. Then this new CFG generates the language of α.

We have shown that, no matter how the regular expression α is constructed, there is always

a CFG that generates the same language. Therefore any regular language is also context-free.

2. We will show that the language A consisting of all strings of the form x = y + z, where

x, y, z ∈ {0, 1}∗ and x = y+ z is a correct equation of base-2 numbers, is not context-free, using

the pumping lemma. Let k ≥ 0 be given. Let z be the string

1k0 = 1k + 1k,

which is in A and of length at least k. Suppose that z is subdivided as z = uvwxy, where

|vwx| ≤ k and vx 6= ε. We will show that uv2wx2y cannot be in A. There are several cases to

consider. Most are easy; we leave the difficult case for the end.

If vwx is entirely contained in the left-hand side of the equation — that is, in 1k0 — then

uv2wx2y is an equation where the left-hand side has a different numerical value than that of

1k0, but the right-hand side still has numerical value equalling that of 1k0. Hence the equation

is false and the string is not in A.

Suppose that vwx is entirely contained in the right-hand side of the equation. If either v or

x contains +, then uv2wx2y contains more than one + and hence is not in A. If vwx is entirely

contained in the first 1k-term on the right-hand side of the equation, then uv2wx2y is a similar

equation with just this term changed; in fact, the numerical value of the term is changed, so the

equation is false and not in A. Similarly, if vwx is entirely contained in the second 1k-term, then

uv2wx2y is not in A. The final subcase occurs when v is contained in the first 1k-term and x is

contained in the second. In this subcase the right-hand side of uv2wx2y has greater numerical

value than the right-hand side of uvwxy, and so uv2wx2y cannot be in A.

The only remaining cases occur when vwx intersects both the left- and right-hand sides of

the equation uvwxy. Since |vwx| ≤ k this forces k ≥ 3. If either v or x contains =, then

uv2wx2y contains more than one = and hence is not in A. Now the only remaining case occurs

when v is contained in the left-hand side and x in the right-hand side. Because |vwx| ≤ k, it

2

Exam 2 Answers CS 254, Spring 2009

must be that x is contained in the first 1k-term on the right-hand side. Thus x = 1` for some

1 ≤ ` ≤ k. Consider uv2wx2y. This is an equation with right-hand side 1`+k + 1k. Let’s do

some arithmetic with base-2 numerals:

1`+k + 1k = 1`0k + 1k + 1k

= 1`0k + 1k0

= 1`0k + 11k−10

= (1` + 1)1k−10

= 10`1k−10.

For the equation uv2wx2y to be true, its left-hand side must be 10`1k−10, which contains the

0-symbol multiple times. We deduce that v contains 0, that v = 1m0 for some 0 ≤ m ≤ k, and

that the left-hand side of uv2wx2y must be uv2 = 1k−m1m01m0. This can equal 10`1k−10 only

if m = k − 1 and k = 1. But k ≥ 3. Thus there is no way for uv2wx2y to be in A.

In all cases we have shown that there is no way to subdivide z as uvwxy such that uv2wx2y

is in A. Therefore, by the pumping lemma, A is not context-free.

3. Intuitively, a PDA on each step of its computation reads in zero or one input symbol,

pops its stack, uses the resulting information to transition to a new state, and pushes zero or

more stack symbols. Intuitively, a two-stack PDA on each step of its computation reads in zero

or one input symbol, pops from two stacks, uses the resulting information to transition to a new

state, and pushes zero or more stack symbols onto each stack. There is no reason to assume

that the two stack alphabets are identical; let’s not. Formally, a two-stack PDA is a 9-tuple

M = (Q,Σ,Γ1,Γ2, δ,⊥1,⊥2, s, F),

where Q is a finite set of states, Σ is a finite input alphabet, Γ1 and Γ2 are finite stack alphabets,

⊥i∈ Γi are the starting symbols for the two stacks, s ∈ Q is the start state, F ⊆ Q is the set of

final states, and

δ ⊆ (Q× (Σ ∪ {ε})× Γ1 × Γ2)× (Q× Γ∗1 × Γ∗2)

is the nondeterministic transition relation. M accepts by final state in the familiar way.

For any two context-free languages L1 and L2 over the same alphabet Σ we can construct a

two-stack PDA M to accept L1∩L2 as follows. Let M1 and M2 be PDAs that accept L1 and L2,

respectively, by final state. For the two-stack PDA M , declare Q = Q1 ×Q2, s = (s1, s2), and

F = F1×F2. Take M ’s Γi and ⊥i straight from the Mi. For all transitions ((p1, a, A1), (q1, α1))

in M1 and ((p2, a, A2), (q2, α2)) in M2 (notice that the same input symbol a appears in both),

3

Exam 2 Answers CS 254, Spring 2009

construct a transition

(((p1, p2), a, A1, A2), ((q1, q2), α1, α2)

for M .

Now M is able, on input x ∈ Σ∗, to transition to a state (q1, q2) ∈ Q if and only if on

input x M1 can transition to q1 and M2 can transition to q2. Thus x can send M into a

final state if and only if it can send M1 into a final state and M2 into a final state. Thus

L(M) = L(M1) ∩ L(M2) = L1 ∩ L2.

From our homework we know that context-free languages are not closed under intersection.

For example, L1 = {anbncm : n,m ≥ 0} and L2 = {anbmcm : n,m ≥ 0} are context-free, but

their intersection L1 ∩ L2 = {anbncn : n ≥ 0} is not. The construction above gives a two-stack

PDA to accept L1 ∩L2. Therefore there is at least one language acceptable by two-stack PDAs

that is not acceptable by one-stack PDAs.

It is easy to see that for any context-free language there exists a two-stack PDA to accept

it; one can just take a one-stack PDA that accepts the language by final state and alter every

transition so that it pops and pushes some symbol ⊥2 on its second stack. Therefore the set of

languages accepted by two-stack PDAs is a strict superset of the set of context-free languages.

4

