
Jordan Decomposition Math 232

In Sections 7.1-7.5 we have studied diagonalization of matrices. Given an n × n matrix A,

the task is to find a diagonal matrix D and an invertible matrix S such that

A = SDS−1.

Diagonalization is useful, because diagonal matrices are often easier to manipulate than non-

diagonal matrices. For example, products of diagonal matrices are simple:
D11 0 · · · 0

0 D22 0
...

. . .
...

0 0 · · · Dnn




C11 0 · · · 0

0 C22 0
...

. . .
...

0 0 · · · Cnn

 =


D11C11 0 · · · 0

0 D22C22 0
...

. . .
...

0 0 · · · DnnCnn

 .

From this fact it follows that powers are also simple:
D11 0 · · · 0

0 D22 0
...

. . .
...

0 0 · · · Dnn


k

=


Dk

11 0 · · · 0

0 Dk
22 0

...
. . .

...

0 0 · · · Dk
nn

 .

This means that the power of any diagonalizable matrix is also easy to compute:(
SDS−1

)k =
(
SDS−1

) (
SDS−1

)
· · ·
(
SDS−1

)
= SDkS−1.

Here is a more sophisticated use of diagonalization. In analogy with the exponential function

ex from calculus, which is

ex =
∞∑

k=0

1
k!
xk = 1 + x+

1
2
x2 +

1
6
x3 + · · · ,

we can define a matrix exponential for any n× n matrix A, by

eA =
∞∑

k=0

1
k!
Ak = I +A+

1
2
A2 +

1
6
A3 + · · · .

This power series converges for any A (proving this fact is a good exercise in linear algebra and

calculus), and hence eA is well-defined. The matrix exponential is interesting and useful for

a variety of reasons, including solution of ordinary differential equations. Unfortunately, it is

complicated to compute. We can work around this complication using diagonalization. First, it

is not difficult to show that the exponential respects similarity:

eSBS−1
= SeBS−1.
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Second, exponentials of diagonal matrices are simple — namely, if D is diagonal n× n, then

eD =


eD11 0 · · · 0

0 eD22 0
...

. . .
...

0 0 · · · eDnn

 .

Combining these two facts gives us an easy way to exponentiate any diagonalizable matrix

A = SDS−1:

eSDS−1
= S


eD11 0 · · · 0

0 eD22 0
...

. . .
...

0 0 · · · eDnn

S−1.

I hope that you are convinced that diagonal matrices are convenient, and hence that di-

agonalization is useful. Unfortunately, not all matrices are diagonalizable. (“Almost all” are,

but the exceptions seem to be disproportionately important in applications.) There are various

ways to work around this problem. You can find a catalogue of them at Wikipedia’s Matrix

decomposition article and related articles. In the remainder of this paper we describe the Jordan

decomposition.

First, we say that a matrix J is a Jordan block if all of its diagonal entries are equal, all

of its entries immediately above the diagonal are 1, and all of its other entries are 0. Here are

three examples, for the 1× 1, 2× 2, and 3× 3 cases:

[
5
]
,

[
−
√

11 1

0 −
√

11

]
,


0.7 1 0

0 0.7 1

0 0 0.7

 .
It is not difficult to prove that the eigenvalues of an n× n Jordan block are its diagonal entries.

That is, the same eigenvalue is repeated n times. However, the corresponding eigenspace is not

n-dimensional, but merely 1-dimensional; the only eigenvector is [1 0 · · · 0]>.

We say that a matrix J is a Jordan matrix if it breaks into Jordan blocks along its diagonal.

Here are some 3× 3 examples:
1.3 1 0

0 1.3 1

0 0 1.3

 ,


0.81 1 0

0 0.81 0

0 0 0.6

 ,


0.41 0 0

0 0.79 0

0 0 0.71

 .
The first example consists of a single Jordan block with eigenvalue 1.3. The second consists of

a 2× 2 block with eigenvalue 0.81 and a 1× 1 block with eigenvalue 0.6. The third consists of

three 1×1 blocks. A Jordan matrix made entirely of 1×1 blocks is the same thing as a diagonal
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matrix. Just so we’re clear, there is no requirement that the eigenvalues in the various Jordan

blocks be distinct. The matrix 
0.81 0 0

0 0.81 0

0 0 0.6


is a legitimate Jordan matrix of three blocks. (It is a useful exercise to compare it to the middle

matrix just above, which differs in only one entry. How are the eigenvalues and eigenvectors of

the two matrices different?)

The following theorem says that all matrices are “Jordanizable”.

Theorem 1 For any n× n matrix A, there exists an invertible matrix S and a Jordan matrix

J such that A = SJS−1. Furthermore, J is unique, up to permutations of its Jordan blocks.

J is called the Jordan canonical form of A, and A = SJS−1 is called a Jordan decomposition

of A. The matrix S is not unique; even in this simple 2 × 2 example of Jordan decomposition,

b could be anything: [
λ 1

0 λ

]
=

[
1 b

0 1

][
λ 1

0 λ

][
1 b

0 1

]−1

.

For another illuminating example, let

A =

[
a b

c d

][
λ 1

0 λ

][
a b

c d

]−1

= λI +
1

ad− bc

[
−ac a2

−c2 ac

]
.

The only eigenvector for A is [a c]>, and the only eigenvalue is λ (repeated). Holding a, c, and λ

to some fixed values, we can still vary b and d freely (as long as ad− bc 6= 0) to produce different

matrices A. So while diagonalizable matrices are completely determined by their eigenvectors

and eigenvalues, nondiagonalizable matrices are not.

In our class, you are not responsible for knowing how to compute the Jordan decomposition

of a matrix. However, I do recommend you play around with some matrices in Mathematica;

see the JordanDecomposition function. Also, you are responsible for understanding how the

structure of the Jordan canonical form reflects the eigenspaces of the original matrix. To that

end, here are some exercises.

1. Compute this matrix’s eigenvalues and eigenvectors. For each eigenvalue, give its algebraic

multiplicity and geometric multiplicity.



−1 0 0 0 0

0 −1 0 0 0

0 0 5 0 0

0 0 0 3 1

0 0 0 0 3
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2. Give a Jordan matrix that has the following eigenvalues with the specified multiplicities.

Eigenvalue Algebraic Multiplicity Geometric Multiplicity

5 1 1

7 2 1

8 2 2

9 3 2

3. Find a 4 × 4 Jordan matrix that has eigenvalue 6 with algebraic multiplicity 4 and

geometric multiplicity 2. Then find another 4× 4 Jordan matrix with the same eigenvalue with

the same multiplicities, but with different Jordan block structure — meaning that the blocks

are of different sizes. (The lesson here is that knowing the eigenvalues with their multiplicities

is not enough to know the Jordan canonical form.)
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