
Exam 2 CS 201, Fall 2010

You have 60 minutes.

Show your work and explain your answers. Good work often earns partial credit. A correct

answer with no explanation often earns little or no credit.

If you are asked to write code but you do not know the exact Python required, then try to write

code that is approximately correct. If you think that your code does not demonstrate that you

understand the solution, then describe your idea in English as well. Be precise enough that I

cannot misinterpret your solution.

Good luck.

1



Exam 2 CS 201, Fall 2010

In the AVL trees below, keys are shown but values are not. Following our standard algorithm,

insert the key 5 into the following AVL tree and restore balance.

Following our standard algorithm, delete the key 8 from this AVL tree and restore balance.

2



Exam 2 CS 201, Fall 2010

Write a function parse that parses postfix algebraic expressions such as 3 x + 15 *. You may

assume that there are no parentheses in the input, that the user makes no syntax errors, and

that all operators are binary. You may assume the existence of a function isOperator, that for

any token returns True or False indicating whether the token is an operator.

3



Exam 2 CS 201, Fall 2010

Describe the running time of __setitem__ in Dictionary implemented atop a binary search

tree (with no balancing). You may want to comment on several possible cases.

Describe the running time of __setitem__ in Dictionary implemented atop a AVL-balanced

binary search tree. You may want to comment on several possible cases.

4



Exam 2 CS 201, Fall 2010

This question has two ingredients. First, our textbook’s parsing algorithm stores operands as

values (e.g. the integer 3) rather than as tokens (e.g. the string "3") in the parse tree. Second,

the epilogue of the Interpretation assignment talks about user-defined functions stored in the

environment as parse trees. Now suppose that we’re trying to add user-defined functions to our

interpreter, and we have a user who has volunteered to help us test the interpreter as we work

on it. Somewhere in the middle of using our interpreter, the user issues the following command.

>> myFunction = (x return (x + y))

Should x be stored in the parse tree as a token or as a value? Should y be stored in the parse

tree as a token or as a value? Discuss.

5


