
Heap Building CS 201, Fall 2010, Carleton College

This little paper argues that the heap building operation, which appears to beO(n log n)

on a list of length n, is actually O(n). Unfortunately, the heap sort algorithm is still

O(n log n). A standard reference for this material is Introduction to Algorithms by Cor-

men, Leiserson, and Rivest.

1 A Fact from Calculus

In order to carry out our heap building running time analysis we need a little fact from

mathematics: Equation (1) below. The proof of this fact uses calculus. If you’ve taken

calculus at the level of Calculus II, then you should be able to follow it. If you haven’t

studied such stuff, then don’t worry; skim this section and just remember that Equa-

tion (1) is true, and that the mathematical argument for it is pretty short and fairly

elementary.

In calculus, it is well known that the geometric series converges for any real number

x such that |x| < 1. Its value is
∞∑
k=0

xk =
1

1− x
.

The function defined by the series is differentiable on (−1, 1); let’s differentiate it:

∞∑
k=1

kxk−1 =
1

(1− x)2
.

If we multiply that equation by x, we obtain

∞∑
k=1

kxk =
x

(1− x)2
.

Now plug in x = 1
2
:

∞∑
k=1

k

2k
= 2.

The quantity k/2k is 0 when k is 0, so we can add a k = 0 term to the left-hand side

without any harm:
∞∑
k=0

k

2k
= 2. (1)

Okay; that’s what we needed.

1



Heap Building CS 201, Fall 2010, Carleton College

2 A Fact about Binary Heaps

We need another ingredient for our running time analysis. It doesn’t use any mathematics

beyond algebra, but it’s more difficult than the preceding argument.

Recall that in any binary tree the height h and the number n of nodes are related by

n ≤ 2h+1 − 1. (2)

Equality holds if and only if the binary tree is full. In a binary heap, all of the levels of

the tree are full except perhaps for the last one. Using Equation (2) twice, it is easy to

see that a binary heap’s height h and number of nodes n satisfy

2h − 1 ≤ n ≤ 2h+1 − 1. (3)

Unfortunately we need some terminology. When we talk about the height of a tree

node, we mean the height of the subtree based at that node. For example, the leaves have

height 0, the nodes immediately above the leaves have height 1, and the root has height

h. For any number k such that 0 ≤ k ≤ h, let n≥k denote the number of nodes in the tree

that are of height k or greater. For example, n≥0 = n and n≥h = 1. In any binary heap,

for any given node-height k, the nodes of height greater than or equal to k form a binary

heap of height h− k. Therefore, by Equation (3),

2h−k − 1 ≤ n≥k ≤ 2h−k+1 − 1. (4)

Now, for any number k such that 0 ≤ k ≤ h, let n=k denote the number of nodes in

the heap that are of height exactly k. For example, n=h = 1. Then for any k,

n=k = n≥k − n≥k+1

≤
(
2h−k+1 − 1

)
−
(
2h−(k+1) − 1

)
= 2h−k+1 − 2h−k−1

= 3 · 2h−k−1

= 3 · 2h · 2−k−1.

(The inequality follows by applying Equation (4) in two different ways.) Henceforth

assume that h ≥ 2. Then 3 · 2h ≤ 4 ·
(
2h − 1

)
, so

3 · 2h · 2−k−1 ≤ 4 ·
(
2h − 1

)
· 2−k−1

≤ 4 · n · 2−k−1

=
2n

2k
.

2



Heap Building CS 201, Fall 2010, Carleton College

It wasn’t easy, but we’ve proved that in any binary heap of n nodes and of height h ≥ 2,

for any integer k such that 0 ≤ k ≤ h,

n=k ≤
2n

2k
. (5)

Intuitively, this says that there are many more low-height nodes than high-height nodes.

3 The Running Time of Heap Building

In this section we use our two facts (Equations (1) and (5)) to prove that building a heap

is O(n) on a list of length n.

The first step in the heap building algorithm is to copy the given list into the heap’s

internal list. This is O(n).

The next step in building a heap is to percolate down all of the heap nodes. (Commonly

we percolate only half of the nodes, but in this argument we’ll pretend that we percolate

all of them — this can only worsen the running time.) If the height h of the heap is less

than 2, then the number n of nodes is less than 8 and all operations are constant-time;

henceforth assume that h ≥ 2. Some of the nodes that we percolate are at height 0, some

are at height 1, and so on, up to the full height h. The number of nodes at any given

height k is at most 2n/2k by Equation (5). The cost of percolating a node at height k is

proportional to k. Therefore the total cost of percolating all of the nodes is no greater

than proportional to
h∑

k=0

2n

2k
k ≤ 2n

∞∑
k=0

k

2k
= 2n · 2,

by Equation (1). So the percolation step is O(n), and so is the entire heap building

algorithm.

4 Heap Sort

Unfortunately, the heap sort algorithm is stillO(n log n) because the process of dequeueing

everything from the heap is still O(n log n).

3


