Here are some notes about Kolmogorov complexity, to expand on what was said in class.

Lemma 0.1. For every $n \ge 0$, there exists a string x of length n such that x is incompressible (meaning $K(x) \ge |x|$).

Proof. There are 2^n strings of length n, but only $2^n - 1$ strings of length less than n. So there is no way that the strings of length less than n could unambiguously encode all of the strings of length n.

Theorem 0.2. The Kolmogorov complexity K is not computable.

Proof. Suppose (for the sake of contradiction) that K is computable. Let M be a Turing machine that on any input x halts with K(x) on its tape. Use M to construct a Turing machine N that, on any input n (regarded as a base-2 integer), outputs some string x satisfying $K(x) \ge n$. (For example, N could try all strings of length n in lexicographic order, using M to compute K for each, until it found x with $K(x) \ge n$. The preceding lemma guarantees that such an x will be found.) Let m be any integer such that

$$m - \lceil \log_2 m \rceil - 1 > |N| + |\#|,$$

and let x = N(m). Notice that m, when written in base 2, requires no more than $\lceil \log_2 m \rceil + 1$ bits. Thus N # m is a description of x, of length

$$|N\#m| \leq |N| + |\#| + \lceil \log_2 m \rceil + 1$$

$$< m,$$

by the definition of m. Therefore K(x) < m. But the definition of N guarantees that $K(x) \ge m$. From this contradiction we conclude that our initial assumption, that K is computable, was false.

Definition 0.3. A property of strings over Σ is a function $f : \Sigma^* \to \{T, F\}$. A property f holds for almost all strings if

$$\lim_{n \to \infty} \frac{\#\{x : |x| = n, f(x) = \mathbf{F}\}}{\#\{x : |x| = n\}} = 0.$$

The following mathematical lemma shows that we can replace "=" with " \leq " in the above definition. Sipser uses this fact without proof. You may want to skip the proof on a first reading.

Lemma 0.4. Let f be a property that holds for almost all strings. Then

$$\lim_{n \to \infty} \frac{\#\{x : |x| \le n, f(x) = \mathbf{F}\}}{\#\{x : |x| \le n\}} = 0.$$

Proof. Let $\epsilon > 0$. We wish to show that there exists N such that for all $n \ge N$

$$\frac{\#\{x: |x| \le n, f(x) = \mathbf{F}\}}{\#\{x: |x| \le n\}} < \epsilon.$$

For the sake of brevity, let $L_n = \#\{x : |x| = n, f(x) = F\}$. Because f holds for almost all strings, there exists an M such that for all n > M,

$$\frac{\#\{x: |x|=n, f(x)=\mathbf{F}\}}{\#\{x: |x|=n\}} < \frac{\epsilon}{2}$$

That is, $L_n < \frac{\epsilon}{2} 2^n$ for all n > M. Pick N large enough so that

$$\sum_{i=0}^{M} L_i < \frac{\epsilon}{2} \left(2^{N+1} - 1 \right).$$

Then for all $n \ge N$

$$\begin{aligned} \#\{x: |x| \le n, f(x) = \mathbf{F}\} &= \sum_{i=0}^{M} L_i + \sum_{i=M+1}^{n} L_i \\ &< \sum_{i=0}^{M} L_i + \sum_{i=M+1}^{n} \frac{\epsilon}{2} 2^i \\ &< \frac{\epsilon}{2} \left(2^{N+1} - 1 \right) + \frac{\epsilon}{2} (2^{n+1} - 1) \\ &\le \epsilon \left(2^{n+1} - 1 \right) \\ &= \epsilon \#\{|x| \le n\}. \end{aligned}$$

This proves the lemma.

Intuitively, a string generated at random should have no pattern and should not be compressible. The following theorem makes this intuition precise.

Theorem 0.5. Let f be a computable property that holds for almost all strings. Let b > 0. Then f(x) = F for only finitely many strings that are incompressible by b.

Proof. If f is false on only finitely many strings, then the theorem is obviously true. Henceforth assume that f is false on infinitely many strings. Denote these strings s_0, s_1, s_2, \ldots in lexicographic order.

For any string x in the sequence s_0, s_1, s_2, \ldots , let i_x be its index in the list. That is, i_x is the unique number such that $s_{i_x} = x$. Let M be a Turing machine that on input i, regarded as a base-2 integer, outputs s_i . Then $M \# i_x$ is a description of x.

Fix b > 0. By the lemma, there exists a large N so that for all $n \ge N$

$$\frac{\#\{x: |x| \le n, f(x) = \mathbf{F}\}}{\#\{x: |x| \le n\}} < \frac{1}{2^{b+|M|+|\#|+1}}.$$

Using the fact that $\#\{x : |x| \le n\} = 2^{n+1} - 1$, we have

$$\#\{x: |x| \le n, f(x) = \mathbf{F}\} < \frac{2^{n+1}}{2^{b+|M|+|\#|+1}} = 2^{n-b-|M|-|\#|}.$$

If x is any string of length $n \ge N$ such that f(x) = F, then $i_x < 2^{n-b-|M|-|\#|}$ and $|i_x| \le n-b-|M|-|\#|$. This implies that

$$K(x) \le |M\#i_x| \le |M| + |\#| + n - b - |M| - |\#| = n - b$$

So x is compressible by b.

We have shown that any string x of length at least N that fails f is compressible by b. There are only finitely many strings of length less than N. Therefore only finitely many x that fail f can be incompressible by b. \Box