
Here are some notes about Kolmogorov complexity, to expand on what was said in class.

Lemma 0.1. For every n ≥ 0, there exists a string x of length n such that x is incompressible (meaning

K(x) ≥ |x|).

Proof. There are 2n strings of length n, but only 2n − 1 strings of length less than n. So there is no way

that the strings of length less than n could unambiguously encode all of the strings of length n. �

Theorem 0.2. The Kolmogorov complexity K is not computable.

Proof. Suppose (for the sake of contradiction) that K is computable. Let M be a Turing machine that

on any input x halts with K(x) on its tape. Use M to construct a Turing machine N that, on any input

n (regarded as a base-2 integer), outputs some string x satisfying K(x) ≥ n. (For example, N could

try all strings of length n in lexicographic order, using M to compute K for each, until it found x with

K(x) ≥ n. The preceding lemma guarantees that such an x will be found.) Let m be any integer such

that

m− dlog2me − 1 > |N |+ |#|,

and let x = N(m). Notice that m, when written in base 2, requires no more than dlog2me+ 1 bits. Thus

N#m is a description of x, of length

|N#m| ≤ |N |+ |#|+ dlog2me+ 1

< m,

by the definition of m. Therefore K(x) < m. But the definition of N guarantees that K(x) ≥ m. From

this contradiction we conclude that our initial assumption, that K is computable, was false. �

Definition 0.3. A property of strings over Σ is a function f : Σ∗ → {T,F}. A property f holds for

almost all strings if

lim
n→∞

#{x : |x| = n, f(x) = F}
#{x : |x| = n}

= 0.

The following mathematical lemma shows that we can replace “=” with “≤” in the above definition.

Sipser uses this fact without proof. You may want to skip the proof on a first reading.

Lemma 0.4. Let f be a property that holds for almost all strings. Then

lim
n→∞

#{x : |x| ≤ n, f(x) = F}
#{x : |x| ≤ n}

= 0.

Proof. Let ε > 0. We wish to show that there exists N such that for all n ≥ N
#{x : |x| ≤ n, f(x) = F}

#{x : |x| ≤ n}
< ε.

For the sake of brevity, let Ln = #{x : |x| = n, f(x) = F}. Because f holds for almost all strings, there

exists an M such that for all n > M ,

#{x : |x| = n, f(x) = F}
#{x : |x| = n}

<
ε

2
.

That is, Ln <
ε
22n for all n > M . Pick N large enough so that

M∑
i=0

Li <
ε

2

(
2N+1 − 1

)
.
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Then for all n ≥ N

#{x : |x| ≤ n, f(x) = F} =

M∑
i=0

Li +

n∑
i=M+1

Li

<

M∑
i=0

Li +

n∑
i=M+1

ε

2
2i

<
ε

2

(
2N+1 − 1

)
+
ε

2
(2n+1 − 1)

≤ ε
(
2n+1 − 1

)
= ε #{|x| ≤ n}.

This proves the lemma. �

Intuitively, a string generated at random should have no pattern and should not be compressible. The

following theorem makes this intuition precise.

Theorem 0.5. Let f be a computable property that holds for almost all strings. Let b > 0. Then f(x) = F

for only finitely many strings that are incompressible by b.

Proof. If f is false on only finitely many strings, then the theorem is obviously true. Henceforth assume

that f is false on infinitely many strings. Denote these strings s0, s1, s2, . . . in lexicographic order.

For any string x in the sequence s0, s1, s2, . . ., let ix be its index in the list. That is, ix is the unique

number such that six = x. Let M be a Turing machine that on input i, regarded as a base-2 integer,

outputs si. Then M#ix is a description of x.

Fix b > 0. By the lemma, there exists a large N so that for all n ≥ N
#{x : |x| ≤ n, f(x) = F}

#{x : |x| ≤ n}
<

1

2b+|M |+|#|+1
.

Using the fact that #{x : |x| ≤ n} = 2n+1 − 1, we have

#{x : |x| ≤ n, f(x) = F} < 2n+1

2b+|M |+|#|+1
= 2n−b−|M |−|#|.

If x is any string of length n ≥ N such that f(x) = F, then ix < 2n−b−|M |−|#| and |ix| ≤ n−b−|M |−|#|.
This implies that

K(x) ≤ |M#ix| ≤ |M |+ |#|+ n− b− |M | − |#| = n− b.

So x is compressible by b.

We have shown that any string x of length at least N that fails f is compressible by b. There are

only finitely many strings of length less than N . Therefore only finitely many x that fail f can be

incompressible by b. �
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