A. Assume for the sake of contradiction that A is regular. Then by the pumping lemma there exists a pumping length p, such that for the string $b^{p} a^{p+1} \in A$, there exist strings x, y, z satisfying $b^{p} a^{p+1}=x y z,|x y| \leq p,|y| \geq 1$, and $x y^{i} z \in A$ for all $i \geq 0$. But $y=b^{k}$ for some k satisfying $1 \leq k \leq p$. So $x y y z=b^{p+k} a^{p+1}$ is not a string in A. This contradiction shows that A is not regular.

For a CFG, I think that $S \rightarrow a|a S| a S b|b S a| a b S \mid b a S$ works. (Checking these is not easy. In grading, I gave full credit to a CFG, if I couldn't quickly detect a defect in it.) For a PDA, simply take any CFG and apply our algorithm for converting a CFG to a PDA.
B. The language is regular. There is a simple three-state DFA for it. I'll omit the drawing.
C. Let L match any one of the 52 letters, and let A match any one of the 62 alphanumeric characters. Then a regular expression H for hostnames is

$$
\left(A A^{*} .\right)^{*} A A^{*} \cdot L L^{*}
$$

Let C match any letter, digit, period, or underscore. Then a regular expression P for paths is

$$
/\left(C C^{*} /\right)^{*}\left(\epsilon \cup C C^{*}\right)
$$

Let D match any of the ten digits. Then a regular expression for URLs is

$$
L L^{*}: / / H\left(\epsilon \cup D D^{*}\right)\left(\epsilon \cup P \cup P \# C C^{*}\right)
$$

D. Let $A=\left\{a^{i} b^{j}\right.$: exactly one of i, j is a multiple of 2 , and exactly one of i, j is a multiple of 3$\} \subseteq$ $\{a, b\}^{*}$. Prove that A is regular, or prove that A is not regular.

It is easy to construct DFAs that match each of these languages:

- $A_{2 \mid i}=\left\{a^{i} b^{j}: 2\right.$ divides $\left.i\right\}$.
- $A_{\overline{2 \mid i}}=\left\{a^{i} b^{j}: 2\right.$ does not divide $\left.i\right\}$.
- $A_{2 \mid j}=\left\{a^{i} b^{j}: 2\right.$ divides $\left.j\right\}$.
- $A_{\overline{2 \mid j}}=\left\{a^{i} b^{j}: 2\right.$ does not divide $\left.j\right\}$.
- $A_{3 \mid i}=\left\{a^{i} b^{j}: 3\right.$ divides $\left.i\right\}$.
- $A_{\overline{3 \mid i}}=\left\{a^{i} b^{j}: 3\right.$ does not divide $\left.i\right\}$.
- $A_{3 \mid j}=\left\{a^{i} b^{j}: 3\right.$ divides $\left.j\right\}$.
- $A_{\overline{3 \mid j}}=\left\{a^{i} b^{j}: 3\right.$ does not divide $\left.j\right\}$.

The language A is a union of intersections of these languages:

$$
\begin{aligned}
A= & \left(A_{2 \mid i} \cap A_{\overline{2 \mid j}} \cap A_{3 \mid i} \cap A_{\overline{3 \mid j}}\right) \cup\left(A_{2 \mid i} \cap A_{\overline{2 \mid j}} \cap A_{3 \mid j} \cap A_{\overline{3 \mid i}}\right) \\
& \cup\left(A_{2 \mid j} \cap A_{\overline{2 \mid i}} \cap A_{3 \mid i} \cap A_{\overline{3 \mid j}}\right) \cup\left(A_{2 \mid j} \cap A_{\overline{2 \mid i}} \cap A_{3 \mid j} \cap A_{\overline{3 \mid i}}\right) .
\end{aligned}
$$

Because each of the eight languages is regular, and regular languages are closed under intersection and union, A must also be regular.
E. Let A be an infinite subset of $\left\{a^{n} b^{n}: n \geq 0\right\}$. Assume for the sake of contradiction that A is regular. By the pumping lemma, there exists a pumping length p for A. Because A is infinite, it must contain at least one string w of length at least $2 p$. This $w=a^{q} b^{q}$ for some $q \geq p$. By the pumping lemma, there exist x, y, z such that $w=x y z,|x y| \leq p,|y|>0$, and $x y^{i} z \in A$ for all $i \geq 0$. Clearly $y=a^{k}$ for some $1 \leq k \leq p$, so $x z=a^{q-k} b^{q}$ is not in A after all. This contradiction shows that A is not regular. Thus no infinite subset of $\left\{a^{n} b^{n}: n \geq 0\right\}$ is regular.

