
Exam B Solutions CS 254, Spring 2012

A. Suppose for the sake of contradiction that A is context-free. Then, by the pumping lemma

for context-free languages, there exists a pumping length p. Let w = 1p01p#1p10p. This w is a

string in A of length at least p, so there exist strings u, v, x, y, z such that w = uvxyz, |vxy| ≤ p,
|vy| > 0, and uvixyiz ∈ A for all i ∈ {0, 1, 2, . . .}. In order to pump to other strings in the

language, it cannot be that (A) v or y contains #, (B) v and y are both substrings of 1p01p, or

(C) v and y are both substrings of 1p10p. Because |vxy| ≤ p, the only possibility is that vxy is

a substring of 1p#1p, with x containing # and v and y consisting of 1s only. But then pumping

v and y again leaves the language A. Thus A cannot be context-free. (Fill in the details.)

B. It is obvious that a two-dimensional Turing machine (2DTM) can simulate an ordinary

Turing machine (TM). The former simply moves its head right one cell, to the beginning of the

input, and then runs the TM’s transitions verbatim. The 2DTM never uses any cells other than

the ones directly to the right of its origin.

In order to simulate a 2DTM on a TM, we need to store the 2DTM tape on an ordinary TM

tape. Any computable bijection f : Z2 → N suffices. That is, f is a one-to-one correspondence

between pairs of integers (which index tape cells in the 2DTM) and natural numbers (which

index tape cells in the TM). For example, f may enumerate 2DTM tape cells by numbering

them in a spiral that emanates from the origin.

We will simulate the 2DTM using a three-tape TM M (which can be simulated by a one-tape

TM, as we have seen). The first tape will store the two-dimensional tape, in the order defined

by f . The second tape will store a pair (x, y) of signed integers, indicating the location of the

2DTM’s tape head. The third tape will be used for computing f . This new M will have all of

the states of the 2DTM, plus additional states for implementing certain subroutines.

Here is a subroutine of M for moving the 2DTM tape head to cell (x, y). Assume that these

coordinates are already on the second tape. Copy them to the third tape. Run the computable

function f using the third tape, to produce f(x, y) on the third tape. Return the first tape head

to the left end of its tape. Then repeatedly move this tape head right, each time decrementing

the third tape, until the third tape is zero. At that point, the first tape head is over cell f(x, y),

which corresponds to cell (x, y) in the 2DTM.

When M is given input w = w1 · · ·wn on its first tape, it first pre-processes its input into

the form expected by a 2DTM. It writes (x, y) = (n, 0) to the second tape, blanks wn from the

first tape, remembers wn in its state, uses the subroutine described above to move to cell (x, y),

and writes wn to cell (x, y). It repeats these steps to move wi to cell (i, 0), for i = n− 1, . . . , 1.

It also enters the symbol ` in cell (0, 0).

To execute a 2DTM transition δ(q, a) = (r, b, d), M does these steps:

1. On the first tape, where the tape head is currently seeing a, replace the a with a b.

1

Exam B Solutions CS 254, Spring 2012

2. On the second tape, either increment or decrement either x or y, depending on d.

3. Use the subroutine described above, to move to cell (x, y).

4. Transition to state r.

The three-tape TM accepts or rejects whenever it enters the accept or reject state of the 2DTM.

C. First we reduce HALTTM to DEC. For any Turing machine M and input w, define N

to be the Turing machine that, on any input x, runs M on w and outputs whatever M outputs.

If M halts on w, then N halts on all inputs. If M does not halt on w, then N halts on no

inputs, and in particular does not halt on all inputs. Thus the function that produces 〈N〉 from

〈M,w〉 is a computable reduction of HALTTM to DEC. Because HALTTM is not recognizable,

it follows that DEC is not recognizable.

In a sense, reducing a problem to DEC is inherently easier than reducing a problem to

DEC. A hypothetical recognizer for DEC is very useful in solving other problems, because

TMs in DEC are hard to deal with, because they don’t always halt. In contrast, a hypothetical

recognizer for DEC is not so useful, because the TMs that it recognizes are precisely the TMs

that are already easy to use.

We now reduce ATM to DEC. For any Turing machine M and input w, define a Turing

machine N that, on input x, does the following. N runs M on w, but only for |x| steps. If M

accepts, then N enters into a loop. Otherwise, N accepts. In analyzing N , consider four cases:

1. If M accepts w in no more than |x| steps, then N loops on x.

2. If M accepts w in more than |x| steps, then N accepts x.

3. If M rejects w, then N accepts x.

4. If M loops on w, then N accepts x.

If 〈M,w〉 ∈ ATM , then 〈M,w〉 fits into one of the two latter cases. In these cases, N accepts all

inputs x, and thus N ∈ DEC. On the other hand, if 〈M,w〉 ∈ ATM , then 〈M,w〉 fits into one

of the two former cases. Let t be the number of steps in which M accepts w. Then N loops on

inputs x such that |x| ≥ t, so N ∈ DEC. Thus the function that produces 〈N〉 from 〈M,w〉 is a

computable reduction of ATM to DEC. Because ATM is not recognizable, it follows that DEC

is not recognizable.

2

