
Path Finding CS 202, Winter 2013, Carleton College

My treatment of breadth-first search and Dijkstra’s algorithm differs from our textbook’s in two ways.

First, I structure the two algorithms to emphasize their similarity. Second, I keep track of predecessor

nodes. For any node u, the predecessor p is the node immediately before u on the shortest path from s to

u. Predecessor nodes are useful for reconstructing the shortest path explicitly, rather than just knowing

its length.

1 Breadth-First Search

Input: A graph G = (V,E) and a start node s ∈ V . Output: A list of nodes in G, each tagged with

information about the (or a) shortest path from s to the node. Specifically, each node will be presented

in a triple [u, p, d], where u is the node, p is the predecessor node (or None), and d is the distance from

s to u (the number of edges used in the shortest path).

1. Let frontier = [[s,None, 0]] and known = [].

2. While frontier is not empty:

(a) Remove the first item [u, p, d] from the start of frontier.

(b) For each neighbor v of u:

i. If v is not in known and not in frontier, then append [v, u, d+ 1] to the end of frontier.

(c) Append [u, p, d] to known.

3. Return known.

2 Dijkstra’s Algorithm

Input: A weighted graph G = (V,E) and a start node s ∈ V . Let weight(u, v) denote the weight of the

edge from u to v, if any. Output: A list of nodes in G, each tagged with information about the (or a)

shortest path from s to the node. Specifically, each node will be presented in a triple [u, p, d], where u is

the node, p is the predecessor node (or None), and d is the distance from s to u (the total weight of the

edges used in the shortest path).

1. Let frontier = [[s,None, 0]] and known = [].

2. While frontier is not empty:

(a) Remove the triple [u, p, d] from frontier that has the least d.

(b) For each neighbor v of u:

i. If v is in frontier, then let [v, q, c] be its triple in frontier; if d + weight(u, v) < c, then

update v’s triple in frontier to be [v, u, d + weight(u, v)].

ii. If v is not in known and not in frontier, then append [v, u, d+weight(u, v)] to frontier.

(c) Append [u, p, d] to known.

3. Return known.

1


