A. A. Let $D=0 \cup 1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9$. Let

$$
Z=D D D D D \cup D D D D D-D D D D
$$

B. Let A be a regular expression that matches all single upper-case letters, lower-case letters, and spaces \smile. Let

$$
S=D D_{\star \smile}^{*} A A^{*}
$$

C. Let

$$
P=\mathrm{PO}_{\lrcorner \cup}{ }^{*} \mathrm{Box}_{\llcorner u}{ }^{*} D D^{*} .
$$

D. Let C be a regular expression that matches all single upper-case letters. Let N be a regular expression that matches the newline and carriage return characters. Then the regular expression that we desire is

$$
\left.A A^{*} N(S \cup P) N A A^{*},\right\lrcorner \iota^{*} C C_{\lrcorner\lrcorner}{ }^{*} Z .
$$

[This problem is somewhat under-specified and open-ended. In grading, I am looking for reasonable answers that demonstrate basic competence with regular expressions. In other words, a perfect answer is not required. Just about any answer can be improved to a slightly better answer that handles more obscure cases.]
B. Let A be regular and B be context-free. Let M be a DFA for A and N a PDA for B. We will design a PDA P for $A \cap B$, that simulates M and N simultaneously and accepts if and only if both M and N accept. The stack of P will be used to simulate the stack of N. Precisely, let

- $\Sigma^{P}=\Sigma^{M}=\Sigma^{N}$,
- $\Gamma^{P}=\Gamma^{N}$,
- $Q^{P}=Q^{M} \times Q^{N}$,
- $q_{0}^{P}=\left(q_{0}^{M}, q_{0}^{N}\right)$, and
- $F^{P}=F^{M} \times F^{N}$.

It remains to describe δ^{P}. For every transition $\delta^{M}\left(q^{M}, a\right)=r^{M}$ and $\delta^{N}\left(q^{N}, a, t\right)=\left(r^{N}, u\right)$, add a transition

$$
\delta^{P}\left(\left(q^{M}, q^{N}\right), a, t\right)=\left(\left(r^{M}, r^{N}\right), u\right)
$$

By our usual reasoning for the product construction, P accepts exactly $A \cap B$.
C. [This is 1.49 b in our textbook. By the way, 1.49 a is more interesting.] Let $A=\left\{1^{n} w\right.$: $n \geq 0$ and w contains at most $n 1 \mathrm{~s}\} \subseteq\{0,1\}^{*}$. Assume for the sake of contradiction that A is
regular. Let p be the pumping length for A. Let $s=1^{p} 01^{p}$. Then $s \in A$ and $|s| \geq p$. By the pumping lemma, $s=x y z$ where $y \neq \epsilon,|x y| \leq p$, and $x y^{i} z \in A$ for all $i \geq 0$. It is easy to see that $x y$ is a substring of the first 1^{p} in s. Thus $y=1^{k}$ for some $1 \leq k \leq p$, and $x y^{0} z=1^{p-k} 01^{p}$. When $1^{p-k} 01^{p}$ is written in the form $1^{n} w$, it must be true that $n \leq p-k<p$ and there are at least $p 1 \mathrm{~s}$ in w. Thus $x y^{0} z \notin A$. This contradiction implies that A is not regular after all.
D. [This is 1.63a in our textbook.] Let A be infinite and regular. Because A is regular, there exists a pumping length p for A. Because A is infinite, there exists a string $s \in A$ such that $|s| \geq p$. By the pumping lemma, there exist strings x, y, z such that $y \neq \epsilon$ and $x y^{i} z \in A$ for all $i \geq 0$. Let $B=\left\{x y^{i} z: i\right.$ is even $\}$. Because $y \neq \epsilon, B$ is infinite. Because $x(y y)^{*} z$ is a regular expression for B, B is regular. Let $C=A-B=A \cap \bar{B}$. Because B is regular, so is \bar{B}. Because A and \bar{B} are regular, so is their intersection, which is C. Because C contains $x y^{i} z$ for all odd i, C is infinite. Finally, B and C are disjoint, and $B \cup C=A$. Thus A is a disjoint union of two infinite, regular languages B and C.
E. [This is 2.9 in our textbook.] This context-free grammar works for the given language: $S \rightarrow T C|A U, C \rightarrow \epsilon| c C, A \rightarrow \epsilon|a A, T \rightarrow \epsilon| a T b, U \rightarrow \epsilon \mid b U c$.

