Complete these exercises:
A. Section 16.1 Exercises 11-14, 15-18, 23.
B. In class we discussed the vector field $\vec{F}=\langle 1+\log (x y), x / y\rangle$ for $x>0$ and $y>0$. Either find a potential function for \vec{F}, or show that none exists. [Hint: $(x \log x-x)^{\prime}=\log x$.]

For the remaining problem(s), let X be the set of points in the plane other than the origin:

$$
X=\{(x, y): x \neq 0 \text { or } y \neq 0\} .
$$

Also let

$$
\vec{F}=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle .
$$

Notice that \vec{F} is defined on all of X.
C1. Show that $\frac{d}{d y} F_{1}=\frac{d}{d x} F_{2}$ everywhere on X.
C2. Find a potential function for \vec{F} on the part of X where $x>0$. [Hint: Consider something like $\arctan (y / x)$ or $\arctan (-x / y)$.]

C3. Find a potential function for \vec{F} on the part of X where $y>0$.
C4. Find a potential function for \vec{F} on the part of X where $x<0$.
C5. Find a potential function for \vec{F} on the part of X where $y<0$.
C6. Explain thoroughly why there is no one potential function for \vec{F} on all of X. [Hint: Figure out what the value of the function must be at the four points $(x, y)=(\pm 1, \pm 1)$.]

