\mathbf{A} .

$$\begin{split} \vec{v} + \vec{w} &= \langle 3, 4, 2, 3 \rangle. \\ &4 \vec{v} = \langle 8, 4, -4, 4 \rangle. \\ &\vec{v} \cdot \vec{w} = 2 + 3 - 3 + 2 = 4. \\ &\operatorname{proj}_{\vec{w}} \vec{v} = \frac{\vec{v} \cdot \vec{w}}{\vec{w} \cdot \vec{w}} \vec{w} = \frac{4}{23} \langle 1, 3, 3, 2 \rangle. \end{split}$$

B. If $f = -GM(x^2 + y^2 + z^2)^{-1/2}$, then

$$f_x = -GM(-1/2)(x^2 + y^2 + z^2)^{-3/2}2x = GM(x^2 + y^2 + z^2)^{-3/2}x.$$

The other partials f_y and f_z are similar, with the consequence that

$$-\nabla f = -GM(x^2 + y^2 + z^2)^{-3/2}\vec{x} = \frac{GM}{|\vec{x}|^2} \cdot \frac{-\vec{x}}{|\vec{x}|}.$$

Here, $-\vec{x}/|\vec{x}|$ is the unit vector pointing from \vec{x} toward the origin. So the acceleration has magnitude $GM/|\vec{x}|^2$ in that direction.

C1. Let
$$\vec{r}(t) = (t, f(t), 0)$$
. Then $\vec{r}'(t) = (1, f'(t), 0), \vec{r}''(t) = (0, f''(t), 0)$, and

$$\kappa = \frac{|\vec{r}' \times \vec{r}''|}{|\vec{r}'|^3} = \frac{|(0, 0, f''(t))|}{|(1, f'(t), 0)|^3} = \frac{|f''(t)|}{(1 + (f'(t))^2)^{3/2}}.$$

C2. Notice that the curve lies entirely in the *x-y*-plane. Hence its unit tangent vector \vec{T} is always in that plane, the derivative of \vec{T} is always in that plane, and so is the unit normal $\vec{N} = \vec{T'}/|\vec{T'}|$. (This result matches our intuition, that \vec{N} always points "into the turn" of the curve. For that to be true of a plane curve, \vec{N} must lie in the plane.) Thus the unit binormal $\vec{B} = \vec{T} \times \vec{N}$ is $\langle 0, 0, \pm 1 \rangle$ wherever it is defined, and $d\vec{B}/ds = \vec{0}$ wherever it exists. The torsion τ , being defined by $d\vec{B}/ds = -\tau \vec{N}$, must be 0 everywhere it exists.

D. We first express the locations of the two cities in spherical coordinates on a sphere of radius 1. Johannesburg is at $\phi = 116^{\circ}$, $\theta = 28^{\circ}$, while Phnom Penh is at $\phi = 78^{\circ}$, $\theta = 105^{\circ}$. Converting to Cartesian coordinates, we have Johannesburg at $\vec{j} = (\sin 116^{\circ} \cos 28^{\circ}, \sin 116^{\circ} \sin 28^{\circ}, \cos 116^{\circ})$ and Phnom Penh at $\vec{p} = (\sin 78^{\circ} \cos 105^{\circ}, \sin 78^{\circ} \sin 105^{\circ}, \cos 78^{\circ})$. Then

$$\vec{j} \cdot \vec{p} = |\vec{j}| |\vec{p}| \cos \alpha = \cos \alpha,$$

where α is the central angle between the two vectors. Finally, the distance along the sphere in km is 6371α , which equals

 $6371 \arccos(\sin 116^{\circ} \cos 28^{\circ} \sin 78^{\circ} \cos 105^{\circ} + \sin 116^{\circ} \sin 28^{\circ} \sin 78^{\circ} \sin 105^{\circ} + \cos 116^{\circ} \cos 78^{\circ}).$

E. In two dimensions we have polar coordinates

$$x = \cos \theta,$$

$$y = \sin \theta$$

on the unit circle, and in three dimensions we have spherical coordinates

$$x = \sin \phi \cos \theta,$$

$$y = \sin \phi \sin \theta,$$

$$z = \cos \phi$$

on the unit sphere. Continuing this pattern, we try

$$x = \sin \psi \sin \phi \cos \theta,$$

$$y = \sin \psi \sin \phi \sin \theta,$$

$$z = \sin \psi \cos \phi,$$

$$w = \cos \psi$$

on the unit hypersphere in four dimensions. One can check that $x^2 + y^2 + z^2 + w^2 = 1$, as desired. One can also check that all regions of the sphere are covered, although that is harder to do. By the way, here is another answer:

$$x = \sin \phi \cos \theta,$$

$$y = \sin \phi \sin \theta,$$

$$z = \cos \phi \cos \psi,$$

$$w = \cos \phi \sin \psi.$$

F1. Let $f(x, y) = \frac{x^3 y}{x^6 + y^2}$. Along the line y = mx,

$$f = \frac{mx^4}{x^6 + m^2x^2} = \frac{mx^2}{x^4 + m^2}.$$

If m = 0, then $f = 0/x^4 = 0 \to 0$ as $x \to 0$. If $m \neq 0$, then $f \to 0/m^2 = 0$ as $x \to 0$. Finally, along the vertical line x = 0, $f = 0/m^2 = 0 \to 0$ as $x \to 0$. Thus f goes to 0 along every line through the origin.

F2. Along the curve $y = x^3$,

$$f = \frac{x^6}{x^6 + x^6} = 1/2.$$

Thus $f \to 1/2$ along this curve. Because this apparent limit disagrees with those found in part F1, we conclude that $\lim_{(x,y)\to(0,0)} f$ does not exist.

G. No, there does not exist a function f(x, y) such that $\nabla f = \langle x^2 \cos(x^3 y^3), y^2 \sin(x^3 y^3) \rangle$. For suppose such an f did exist. Then

$$f_x = x^2 \cos(x^3 y^3) \Rightarrow f_{xy} = -x^2 \sin(x^3 3 y^2),$$

while

$$f_y = y^2 \sin(x^3 y^3) \Rightarrow f_{yx} = y^2 \cos(3x^2 y^3).$$

Because f_{xy} and f_{yx} are compositions of continuous functions, they are continuous, and by Clairaut's theorem they must agree. But they do not. Hence f cannot exist.

H. In Cartesian coordinates, the circle of radius R centered at (R, 0) is

$$(x - R)^2 + y^2 = R^2.$$

Substituting $x = r \cos \theta$ and $y = r \sin \theta$ yields

$$(r\cos\theta - R)^2 + (r\sin\theta)^2 = R^2$$

which is equivalent to

$$r^2\cos^2\theta - 2rR\cos\theta + R^2 + r^2\sin^2\theta = R^2,$$

which simplifies to

$$r - 2R\cos\theta = 0.$$