A.

$$
\begin{aligned}
& \vec{v}+\vec{w}=\langle 3,4,2,3\rangle . \\
& 4 \vec{v}=\langle 8,4,-4,4\rangle . \\
& \vec{v} \cdot \vec{w}=2+3-3+2=4 . \\
& \operatorname{proj}_{\vec{w}} \vec{v}=\frac{\vec{v} \cdot \vec{w}}{\vec{w} \cdot \vec{w}} \vec{w}=\frac{4}{23}\langle 1,3,3,2\rangle .
\end{aligned}
$$

B. If $f=-G M\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}$, then

$$
f_{x}=-G M(-1 / 2)\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2} 2 x=G M\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2} x .
$$

The other partials f_{y} and f_{z} are similar, with the consequence that

$$
-\nabla f=-G M\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2} \vec{x}=\frac{G M}{|\vec{x}|^{2}} \cdot \frac{-\vec{x}}{|\vec{x}|}
$$

Here, $-\vec{x} /|\vec{x}|$ is the unit vector pointing from \vec{x} toward the origin. So the acceleration has magnitude $G M /|\vec{x}|^{2}$ in that direction.

C1. Let $\vec{r}(t)=(t, f(t), 0)$. Then $\vec{r}^{\prime}(t)=\left(1, f^{\prime}(t), 0\right), \vec{r}^{\prime \prime}(t)=\left(0, f^{\prime \prime}(t), 0\right)$, and

$$
\kappa=\frac{\left|\vec{r}^{\prime} \times \vec{r}^{\prime \prime}\right|}{\left|\vec{r}^{\prime}\right|^{3}}=\frac{\left|\left(0,0, f^{\prime \prime}(t)\right)\right|}{\left|\left(1, f^{\prime}(t), 0\right)\right|^{3}}=\frac{\left|f^{\prime \prime}(t)\right|}{\left(1+\left(f^{\prime}(t)\right)^{2}\right)^{3 / 2}} .
$$

C2. Notice that the curve lies entirely in the $x-y$-plane. Hence its unit tangent vector \vec{T} is always in that plane, the derivative of \vec{T} is always in that plane, and so is the unit normal $\vec{N}=\vec{T}^{\prime} /\left|\vec{T}^{\prime}\right|$. (This result matches our intuition, that \vec{N} always points "into the turn" of the curve. For that to be true of a plane curve, \vec{N} must lie in the plane.) Thus the unit binormal $\vec{B}=\vec{T} \times \vec{N}$ is $\langle 0,0, \pm 1\rangle$ wherever it is defined, and $d \vec{B} / d s=\overrightarrow{0}$ wherever it exists. The torsion τ, being defined by $d \vec{B} / d s=-\tau \vec{N}$, must be 0 everywhere it exists.
D. We first express the locations of the two cities in spherical coordinates on a sphere of radius 1. Johannesburg is at $\phi=116^{\circ}, \theta=28^{\circ}$, while Phnom Penh is at $\phi=78^{\circ}, \theta=105^{\circ}$. Converting to Cartesian coordinates, we have Johannesburg at $\vec{j}=\left(\sin 116^{\circ} \cos 28^{\circ}, \sin 116^{\circ} \sin 28^{\circ}, \cos 116^{\circ}\right)$ and Phnom Penh at $\vec{p}=\left(\sin 78^{\circ} \cos 105^{\circ}, \sin 78^{\circ} \sin 105^{\circ}, \cos 78^{\circ}\right)$. Then

$$
\vec{j} \cdot \vec{p}=|\vec{j}||\vec{p}| \cos \alpha=\cos \alpha
$$

where α is the central angle between the two vectors. Finally, the distance along the sphere in km is 6371α, which equals
$6371 \arccos \left(\sin 116^{\circ} \cos 28^{\circ} \sin 78^{\circ} \cos 105^{\circ}+\sin 116^{\circ} \sin 28^{\circ} \sin 78^{\circ} \sin 105^{\circ}+\cos 116^{\circ} \cos 78^{\circ}\right)$.
E. In two dimensions we have polar coordinates

$$
\begin{aligned}
& x=\cos \theta \\
& y=\sin \theta
\end{aligned}
$$

on the unit circle, and in three dimensions we have spherical coordinates

$$
\begin{aligned}
x & =\sin \phi \cos \theta \\
y & =\sin \phi \sin \theta \\
z & =\cos \phi
\end{aligned}
$$

on the unit sphere. Continuing this pattern, we try

$$
\begin{aligned}
x & =\sin \psi \sin \phi \cos \theta, \\
y & =\sin \psi \sin \phi \sin \theta, \\
z & =\sin \psi \cos \phi, \\
w & =\cos \psi
\end{aligned}
$$

on the unit hypersphere in four dimensions. One can check that $x^{2}+y^{2}+z^{2}+w^{2}=1$, as desired. One can also check that all regions of the sphere are covered, although that is harder to do. By the way, here is another answer:

$$
\begin{aligned}
x & =\sin \phi \cos \theta \\
y & =\sin \phi \sin \theta \\
z & =\cos \phi \cos \psi, \\
w & =\cos \phi \sin \psi .
\end{aligned}
$$

F1. Let $f(x, y)=\frac{x^{3} y}{x^{6}+y^{2}}$. Along the line $y=m x$,

$$
f=\frac{m x^{4}}{x^{6}+m^{2} x^{2}}=\frac{m x^{2}}{x^{4}+m^{2}} .
$$

If $m=0$, then $f=0 / x^{4}=0 \rightarrow 0$ as $x \rightarrow 0$. If $m \neq 0$, then $f \rightarrow 0 / m^{2}=0$ as $x \rightarrow 0$. Finally, along the vertical line $x=0, f=0 / m^{2}=0 \rightarrow 0$ as $x \rightarrow 0$. Thus f goes to 0 along every line through the origin.

F2. Along the curve $y=x^{3}$,

$$
f=\frac{x^{6}}{x^{6}+x^{6}}=1 / 2 .
$$

Thus $f \rightarrow 1 / 2$ along this curve. Because this apparent limit disagrees with those found in part F1, we conclude that $\lim _{(x, y) \rightarrow(0,0)} f$ does not exist.
G. No, there does not exist a function $f(x, y)$ such that $\nabla f=\left\langle x^{2} \cos \left(x^{3} y^{3}\right), y^{2} \sin \left(x^{3} y^{3}\right)\right\rangle$. For suppose such an f did exist. Then

$$
f_{x}=x^{2} \cos \left(x^{3} y^{3}\right) \Rightarrow f_{x y}=-x^{2} \sin \left(x^{3} 3 y^{2}\right)
$$

while

$$
f_{y}=y^{2} \sin \left(x^{3} y^{3}\right) \Rightarrow f_{y x}=y^{2} \cos \left(3 x^{2} y^{3}\right) .
$$

Because $f_{x y}$ and $f_{y x}$ are compositions of continuous functions, they are continuous, and by Clairaut's theorem they must agree. But they do not. Hence f cannot exist.
H. In Cartesian coordinates, the circle of radius R centered at $(R, 0)$ is

$$
(x-R)^{2}+y^{2}=R^{2} .
$$

Substituting $x=r \cos \theta$ and $y=r \sin \theta$ yields

$$
(r \cos \theta-R)^{2}+(r \sin \theta)^{2}=R^{2},
$$

which is equivalent to

$$
r^{2} \cos ^{2} \theta-2 r R \cos \theta+R^{2}+r^{2} \sin ^{2} \theta=R^{2}
$$

which simplifies to

$$
r-2 R \cos \theta=0 .
$$

