A. This vector field \vec{F} has curl zero but is not conservative - that is, \vec{F} does not arise as the gradient of any potential function. Or, if you don't like the concept of curl, we can instead say that the cross-partials condition $\frac{\partial F_{1}}{\partial y}=\frac{\partial F_{2}}{\partial x}$ is met, but \vec{F} is not conservative.

This state of affairs is possible only because the domain of \vec{F} is not simply connected. If \vec{F} were defined at the origin and had curl zero there, then \vec{F} would have to be conservative.
B. It is helpful to consider (and even diagram) how the variables depend on each other. The function f depends on t, x, and y. But x and y depend on t and ϵ. Thus the total derivative of f with respect to t is

$$
\frac{\partial f}{\partial t}+\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial t}=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial x}\left(a_{1}^{\prime}(t)+\epsilon b_{1}^{\prime}(t)\right)+\frac{\partial f}{\partial y}\left(a_{2}^{\prime}(t)+\epsilon b_{2}^{\prime}(t)\right),
$$

and the total derivative of f with respect to ϵ is

$$
\frac{\partial f}{\partial x} \frac{\partial x}{\partial \epsilon}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \epsilon}=\frac{\partial f}{\partial x} b_{1}(t)+\frac{\partial f}{\partial y} b_{2}(t) .
$$

The critical points of f, regarded as a function of t and ϵ, occur where both of these quantities are zero or undefined. Because all functions are smooth, the quantities are never undefined. Therefore the critical points occur where

$$
\begin{aligned}
\frac{\partial f}{\partial t}+\frac{\partial f}{\partial x}\left(a_{1}^{\prime}(t)+\epsilon b_{1}^{\prime}(t)\right)+\frac{\partial f}{\partial y}\left(a_{2}^{\prime}(t)+\epsilon b_{2}^{\prime}(t)\right) & =0 \\
\frac{\partial f}{\partial x} b_{1}(t)+\frac{\partial f}{\partial y} b_{2}(t) & =0
\end{aligned}
$$

C. [This problem is 17.1 Exercise 35.] By the definition of flux, the definition of \vec{n}, a little algebra, and Green's theorem, the flux equals

$$
\begin{aligned}
\int_{a}^{b} \vec{F}(\vec{c}(t)) \cdot \vec{n}(t) d t & =\int_{a}^{b}\left\langle F_{1}, F_{2}\right\rangle \cdot\left\langle y^{\prime},-x^{\prime}\right\rangle d t \\
& =\int_{a}^{b}\left\langle-F_{2}, F_{1}\right\rangle \cdot\left\langle x^{\prime}, y^{\prime}\right\rangle d t \\
& =\int_{\partial D}\left\langle-F_{2}, F_{1}\right\rangle \cdot d \vec{s} \\
& =\iint_{D} \frac{\partial F_{1}}{\partial x}--\frac{\partial F_{2}}{\partial y} d A \\
& =\iint_{D} \operatorname{div} \vec{F} d A .
\end{aligned}
$$

D. Let C be the curve parametrized by \vec{c}. Then by the definition of work and the fundamental theorem for line integrals, the work performed by \vec{F} is

$$
\int_{C} \vec{F} \cdot d \vec{s}=-\int_{C} \nabla V \cdot d \vec{s}=-(V(3,5,9)-V(1,1,1))=k q_{1} q_{2}\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{115}}\right) .
$$

[Let's check that the sign makes sense. If q_{1} and q_{2} have the same sign, then the force should be repulsive, so \vec{F} wants them to move away from each other. That is, \vec{F} helps the second particle move from \vec{P} to \vec{Q}, so the work performed by \vec{F} should be positive. Yep.]
E. [This problem is 15.3 Exercise 31, which was assigned as homework. I'll omit the sketch.] The volume is

$$
\begin{aligned}
\iiint_{W} 1 d V & =\int_{-1}^{1} \int_{x^{2}}^{1} \int_{0}^{1-y^{2}} 1 d z d y d x \\
& =\int_{-1}^{1} \int_{x^{2}}^{1} 1-y^{2} d y d x \\
& =\int_{-1}^{1}\left[y-y^{3} / 3\right]_{x^{2}}^{1} d x \\
& =\int_{-1}^{1}\left(1-\frac{1}{3}\right)-\left(x^{2}-\frac{1}{3} x^{6}\right) d x \\
& =\left[\frac{2}{3} x-\frac{1}{3} x^{3}+\frac{1}{21} x^{7}\right]_{-1}^{1} \\
& =\frac{16}{21}
\end{aligned}
$$

F. [This problem is 14.8 Exercise 27, which was assigned as homework.] Let $f(x, y, z)=$ $\sqrt{x^{2}+y^{2}+z^{2}}$ and $g(x, y, z)=a x+b y+c z$. We wish to minimize f subject to $g=d$. Notice that, because f is nonnegative, minimizing f is equivalent to minimizing $f^{2}=x^{2}+y^{2}+z^{2}$, which is simpler than f. Following the Lagrange multipliers approach, we compute $\nabla f^{2}=\langle 2 x, 2 y, 2 z\rangle$ and $\nabla g=\langle a, b, c\rangle$. We wish to solve

$$
\begin{aligned}
2 x & =\lambda a, \\
2 y & =\lambda b, \\
2 z & =\lambda c, \\
a x+b y+c z & =d .
\end{aligned}
$$

The last equation can be rewritten, with the help of the first three equations, as

$$
\frac{\lambda}{2}\left(a^{2}+b^{2}+c^{2}\right)=d .
$$

Solving for λ in that equation, and plugging the resulting expression for λ into the first three equations, yields

$$
(x, y, z)=\frac{d}{a^{2}+b^{2}+c^{2}}(a, b, c) .
$$

This is the only solution to the four equations. Intuitively, there is a minimum distance from the origin to the plane, so this solution must produce that minimum. The distance from the
origin to this point is

$$
f\left(\frac{d}{a^{2}+b^{2}+c^{2}}(a, b, c)\right)=\left|\frac{d}{a^{2}+b^{2}+c^{2}}\right| \sqrt{a^{2}+b^{2}+c^{2}}=\frac{|d|}{\sqrt{a^{2}+b^{2}+c^{2}}} .
$$

G1. Integrating in polar coordinates, we have

$$
\begin{aligned}
\iint_{D} \log \left(x^{2}+y^{2}\right) d A & =\int_{0}^{2 \pi} \int_{R_{1}}^{R_{2}} \log \left(r^{2}\right) r d r d \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi} d \theta \int_{R_{1}}^{R_{2}} 2 r \log \left(r^{2}\right) d r \\
& =\pi\left[r^{2} \log \left(r^{2}\right)-r^{2}\right]_{R_{1}}^{R_{2}} \\
& =\pi R_{2}^{2}\left(\log \left(R_{2}^{2}\right)-1\right)-\pi R_{1}^{2}\left(\log \left(R_{1}^{2}\right)-1\right)
\end{aligned}
$$

G2. This problem is just like the previous problem, but with $R_{2}=R$ and $R_{1} \rightarrow 0$. So we compute

$$
\lim _{R_{1} \rightarrow 0} \pi R^{2}\left(\log \left(R^{2}\right)-1\right)-\pi R_{1}^{2}\left(\log \left(R_{1}^{2}\right)-1\right)=\pi R^{2}\left(\log \left(R^{2}\right)-1\right)-\pi \lim _{R_{1} \rightarrow 0} R_{1}^{2} \log \left(R_{1}^{2}\right)
$$

Now we focus on that limit term, which is of the form

$$
\begin{aligned}
\lim _{x \rightarrow 0} x^{2} \log \left(x^{2}\right) & =\lim _{x \rightarrow 0} \frac{\log \left(x^{2}\right)}{x^{-2}} \\
& =\lim _{x \rightarrow 0} \frac{x^{-2} 2 x}{-2 x^{-3}} \\
& =\lim _{x \rightarrow 0}-x^{2} \\
& =0
\end{aligned}
$$

by L'Hopital's rule. Therefore the value of the integral in question is $\pi R^{2}\left(\log \left(R^{2}\right)-1\right)$.

