A. Let $\vec{v}=(0,2,0)-(1,0,0)=\langle-1,2,0\rangle$ and $\vec{w}=(0,0,3)-(1,0,0)=\langle-1,0,3\rangle$. Then $\vec{n}=\vec{v} \times \vec{w}=\langle 6,3,2\rangle$ is perpendicular to the plane, with length 7 . Thus $\vec{n} /|\vec{n}|=\langle 6 / 7,3 / 7,2 / 7\rangle$ is a unit vector perpendicular to the plane. [The negation of that answer is an equally good answer.]
B. By stretching our usual circle parametrization, we can parametrize the ellipse as $\vec{c}(t)=$ $(2 \cos t, 3 \sin t)$. Notice that $\vec{c}^{\prime}(t)=\langle-2 \sin t, 3 \cos t\rangle$ is tangent to the ellipse and hence $\vec{n}=$ $\langle-3 \cos t,-2 \sin t\rangle$ is normal to the ellipse. Notice also that \vec{n} points "into" the curve of the ellipse, and hence is a positive multiple of the normal vector \vec{N}. Because $|\vec{n}|=\sqrt{9 \cos ^{2} t+4 \sin ^{2} t}=$ $\sqrt{4+5 \cos ^{2} t}$, we conclude that

$$
\vec{N}=\frac{\langle-3 \cos t,-2 \sin t\rangle}{\sqrt{4+5 \cos ^{2} t}}
$$

C. [This is similar to a homework problem. Specifically, this problem relates to Day 22 Problem B exactly as Day 24 Problem B relates to Day 22 Problem A.] Recall from homework the product rule for divergence:

$$
\operatorname{div}(f \vec{F})=\nabla f \cdot \vec{F}+f \operatorname{div} \vec{F}
$$

Therefore, for a region W of 3D space,

$$
\iiint_{W} \operatorname{div}(f \vec{F}) d V=\iiint_{W} \nabla f \cdot \vec{F} d V+\iiint_{W} f \operatorname{div} \vec{F} d V
$$

By the divergence theorem, the term on the left equals $\iint_{\partial W}(f \vec{F}) \cdot d \vec{S}$. Rearranging the terms a bit, we have an integration by parts formula

$$
\iiint_{W} f \operatorname{div} \vec{F} d V=\iint_{\partial W}(f \vec{F}) \cdot d \vec{S}-\iiint_{W} \nabla f \cdot \vec{F} d V
$$

D1. Well,

$$
\begin{aligned}
\operatorname{curl}(\operatorname{curl} \vec{F}) & =\left[\begin{array}{c}
\partial_{x} \\
\partial_{y} \\
\partial_{z}
\end{array}\right] \times\left(\left[\begin{array}{c}
\partial_{x} \\
\partial_{y} \\
\partial_{z}
\end{array}\right] \times\left[\begin{array}{l}
F_{1} \\
F_{2} \\
F_{3}
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
\partial_{x} \\
\partial_{y} \\
\partial_{z}
\end{array}\right] \times\left[\begin{array}{c}
\partial_{y} F_{3}-\partial_{z} F_{2} \\
\partial_{z} F_{1}-\partial_{x} F_{3} \\
\partial_{x} F_{2}-\partial_{y} F_{1}
\end{array}\right] \\
& =\left[\begin{array}{c}
\partial_{y x} F_{2}-\partial_{y y} F_{1}-\partial_{z z} F_{1}+\partial_{z x} F_{3} \\
\partial_{z y} F_{3}-\partial_{z z} F_{2}-\partial_{x x} F_{2}+\partial_{x y} F_{1} \\
\partial_{x z} F_{1}-\partial_{x x} F_{3}-\partial_{y y} F_{3}+\partial_{y z} F_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\partial_{x x} F_{1}+\partial_{x y} F_{2}+\partial_{x z} F_{3}-\partial_{x x} F_{1}-\partial_{y y} F_{1}-\partial_{z z} F_{1} \\
\partial_{y x} F_{1}+\partial_{y y} F_{2}+\partial_{y z} F_{3}-\partial_{z z} F_{2}-\partial_{y y} F_{2}-\partial_{x x} F_{2} \\
\partial_{z x} F_{1}+\partial_{z y} F_{2}+\partial_{z z} F_{3}-\partial_{x x} F_{3}-\partial_{y y} F_{3}-\partial_{z z} F_{3}
\end{array}\right] \\
& =\left[\begin{array}{l}
\partial_{x}(\operatorname{div} \vec{F})-\Delta F_{1} \\
\partial_{y}(\operatorname{div} \vec{F})-\Delta F_{2} \\
\partial_{z}(\operatorname{div} \vec{F})-\Delta F_{3}
\end{array}\right] \\
& =\nabla(\operatorname{div} \vec{F})-\Delta \vec{F} .
\end{aligned}
$$

D2. Taking the curl of Maxwell's third equation and using problem D1, we have

$$
\nabla(\operatorname{div} \vec{E})-\Delta \vec{E}=\operatorname{curl}\left(-\frac{\partial \vec{B}}{\partial t}\right)
$$

On the left side, the first term vanishes because of Maxwell's first equation. On the right side, $\frac{\partial}{\partial t}$ commutes with curl, because they involve different derivatives. [Compute this out if you like.] Therefore

$$
-\Delta \vec{E}=-\frac{\partial}{\partial t} \operatorname{curl} \vec{B} .
$$

Plugging Maxwell's fourth equation into the right side produces the wave equation.
E. Let $f(\alpha, \beta)=\sin \alpha+\sin \beta+\sin (\pi-\alpha-\beta)$. The first and second partial derivatives are

$$
\begin{aligned}
\frac{\partial f}{\partial \alpha} & =\cos \alpha-\cos (\pi-\alpha-\beta), \\
\frac{\partial f}{\partial \beta} & =\cos \beta-\cos (\pi-\alpha-\beta), \\
\frac{\partial}{\partial \alpha} \frac{\partial f}{\partial \alpha} & =-\sin \alpha-\sin (\pi-\alpha-\beta), \\
\frac{\partial}{\partial \beta} \frac{\partial f}{\partial \beta} & =-\sin \beta-\sin (\pi-\alpha-\beta), \\
\frac{\partial}{\partial \beta} \frac{\partial f}{\partial \alpha} & =-\sin (\pi-\alpha-\beta) .
\end{aligned}
$$

The critical points occur where $\frac{\partial f}{\partial \alpha}=\frac{\partial f}{\partial \beta}=0$, so where $\cos \alpha=\cos (\pi-\alpha-\beta)=\cos \beta$. Because α, β, and $\pi-\alpha-\beta$ are all non-negative, the unique critical point is

$$
\alpha=\beta=\pi / 3=\pi-\alpha-\beta .
$$

Now we perform the second derivative test. At the critical point, $\frac{\partial}{\partial \alpha} \frac{\partial f}{\partial \alpha}=\frac{\partial}{\partial \beta} \frac{\partial f}{\partial \beta}=-\sqrt{3}$ and $\frac{\partial}{\partial \beta} \frac{\partial f}{\partial \alpha}=-\sqrt{3} / 2$. Because $\frac{\partial}{\partial \alpha} \frac{\partial f}{\partial \alpha} \frac{\partial}{\partial \beta} \frac{\partial f}{\partial \beta}-\left(\frac{\partial}{\partial \beta} \frac{\partial f}{\partial \alpha}\right)^{2}=3-3 / 4>0$, the critical point is a local maximum or minimum. Because $\frac{\partial}{\partial \alpha} \frac{\partial f}{\partial \alpha}<0$, it must be a local maximum. The value of f at this point is $3 \sqrt{3} / 2$. If we insist that $\alpha, \beta, \gamma>0$, then we are finished, because the domain of optimization has no boundary. If we allow one of the angles to degenerate to 0 , then the other two angles go to $\pi / 2$, and f has the value 2 , which is less than its value at the critical point. Therefore, even if we consider degenerate triangles, f is maximized at $\alpha=\beta=\gamma=\pi / 3$.

F1. Well,

$$
z^{4}=\left((x+i y)^{2}\right)^{2}=\left(\left(x^{2}-y^{2}\right)+i(2 x y)\right)^{2}=\left(\left(x^{2}-y^{2}\right)^{2}-4 x^{2} y^{2}\right)+i\left(4\left(x^{2}-y^{2}\right) x y\right) .
$$

Therefore the vector field is

$$
\left\langle\left(x^{2}-y^{2}\right)^{2}-4 x^{2} y^{2}+c_{1}, 4\left(x^{2}-y^{2}\right) x y+c_{2}\right\rangle .
$$

F2. The black part of the fractal, representing those values of \vec{c} for which $(0,0)$ never escapes, consists of just the origin $(0,0)$. Every other point in the plane is non-black. These points are colored according to their distance from the origin, with the colors changing more quickly as we approach the origin. Here is a plot of the fractal in $[-2,2] \times[-2,2]$.

G. [I'll omit the sketch.] The integral to compute is

$$
\begin{aligned}
\int_{0}^{1} \int_{x^{2}}^{x} \int_{0}^{x} x+2 y d z d y d x & =\int_{0}^{1} \int_{x^{2}}^{x} x^{2}+2 x y d y d x \\
& =\int_{0}^{1}\left[x^{2} y+x y^{2}\right]_{y=x^{2}}^{y=x} d x \\
& =\int_{0}^{1} x^{3}+x^{3}-x^{4}-x^{5} d x \\
& =\left[\frac{1}{2} x^{4}-\frac{1}{5} x^{5}-\frac{1}{6} x^{6}\right]_{0}^{1} \\
& =\frac{1}{2}-\frac{1}{5}-\frac{1}{6} \\
& =\frac{2}{15} .
\end{aligned}
$$

H. Well,

$$
\begin{aligned}
-\frac{1}{\rho} \nabla p+\nabla \cdot T & =\left[\begin{array}{c}
-\frac{1}{\rho} \partial_{x} p+\partial_{x} T_{11}+\partial_{y} T_{12}+\partial_{z} T_{13} \\
-\frac{1}{\rho} \partial_{y} p+\partial_{x} T_{21}+\partial_{y} T_{22}+\partial_{z} T_{23} \\
-\frac{1}{\rho} \partial_{z} p+\partial_{x} T_{31}+\partial_{y} T_{32}+\partial_{z} T_{33}
\end{array}\right] \\
& =\left[\begin{array}{c}
\partial_{x}\left(T_{11}-\frac{1}{\rho} p\right)+\partial_{y} T_{12}+\partial_{z} T_{13} \\
\partial_{x} T_{21}+\partial_{y}\left(T_{22}-\frac{1}{\rho} p\right)+\partial_{z} T_{23} \\
\partial_{x} T_{31}+\partial_{y} T_{32}+\partial_{z}\left(T_{33}-\frac{1}{\rho} p\right)
\end{array}\right] \\
& =\nabla \cdot U
\end{aligned}
$$

where

$$
U=\left[\begin{array}{ccc}
T_{11}-\frac{1}{\rho} p & T_{12} & T_{13} \\
T_{21} & T_{22}-\frac{1}{\rho} p & T_{23} \\
T_{31} & T_{32} & T_{33}-\frac{1}{\rho} p
\end{array}\right]
$$

I. Let S be the portion of the ellipsoid $(x / 4)^{2}+(y / 3)^{2}+(z / 2)^{2}=1$ where $x, y, z \leq 0$. Orient S so that it has upward-pointing normals. Compute the flux of $\vec{F}=\langle 0,0, z\rangle$ across S.

We parametrize the ellipsoid by

$$
\vec{G}(\phi, \theta)=(4 \sin \phi \cos \theta, 3 \sin \phi \sin \theta, 2 \cos \phi) .
$$

Then

$$
\begin{aligned}
\vec{G}_{\phi} & =\langle 4 \cos \phi \cos \theta, 3 \cos \phi \sin \theta,-2 \sin \phi\rangle \\
\vec{G}_{\theta} & =\langle-4 \sin \phi \sin \theta, 3 \sin \phi \cos \theta, 0\rangle \\
\vec{n} & =\vec{G}_{\theta} \times \vec{G}_{\phi} \\
& =\left\langle-6 \sin ^{2} \phi \cos \theta, 8 \sin ^{2} \phi \sin \theta,-12 \sin \phi \cos \phi\right\rangle .
\end{aligned}
$$

Let's check that we have oriented \vec{n} correctly. For example, the point $(-4,0,0)$ is on S. At that point, $\phi=\pi / 2$ and $\theta=\pi$, so $\vec{n}=\langle 6,0,0\rangle$. This normal vector points "into" the ellipsoid, and hence \vec{n} is upward-pointing on S. The flux is

$$
\begin{aligned}
\iint_{S} \vec{F} \cdot d \vec{S} & =\int_{\pi}^{3 \pi / 2} \int_{\pi / 2}^{\pi} \vec{F}(\vec{G}(\phi, \theta)) \cdot \vec{n}(\phi, \theta) d \phi d \theta \\
& =\int_{\pi}^{3 \pi / 2} \int_{\pi / 2}^{\pi} 2 \cos \phi \cdot-12 \sin \phi \cos \phi d \phi d \theta \\
& =-24 \frac{\pi}{2} \int_{\pi / 2}^{\pi} \cos ^{2} \phi \sin \phi d \phi \\
& =-12 \pi\left[-\frac{1}{3} \cos ^{3} \phi\right]_{\pi / 2}^{\pi} \\
& =4 \pi\left(\cos ^{3} \pi-\cos ^{3} \frac{\pi}{2}\right) \\
& =-4 \pi
\end{aligned}
$$

Let's check that the sign is correct. The normal \vec{n} points up, while \vec{F} points down. So we expect the flux to be negative.

