
Exam C Solutions Math 211, Fall 2014, Carleton College

A. Let ~v = (0, 2, 0) − (1, 0, 0) = 〈−1, 2, 0〉 and ~w = (0, 0, 3) − (1, 0, 0) = 〈−1, 0, 3〉. Then

~n = ~v × ~w = 〈6, 3, 2〉 is perpendicular to the plane, with length 7. Thus ~n/|~n| = 〈6/7, 3/7, 2/7〉
is a unit vector perpendicular to the plane. [The negation of that answer is an equally good

answer.]

B. By stretching our usual circle parametrization, we can parametrize the ellipse as ~c(t) =

(2 cos t, 3 sin t). Notice that ~c′(t) = 〈−2 sin t, 3 cos t〉 is tangent to the ellipse and hence ~n =

〈−3 cos t,−2 sin t〉 is normal to the ellipse. Notice also that ~n points “into” the curve of the ellipse,

and hence is a positive multiple of the normal vector ~N . Because |~n| =
√

9 cos2 t+ 4 sin2 t =
√

4 + 5 cos2 t, we conclude that

~N =
〈−3 cos t,−2 sin t〉√

4 + 5 cos2 t
.

C. [This is similar to a homework problem. Specifically, this problem relates to Day 22 Problem

B exactly as Day 24 Problem B relates to Day 22 Problem A.] Recall from homework the product

rule for divergence:

div(f ~F ) = ∇f · ~F + fdiv ~F .

Therefore, for a region W of 3D space,∫∫∫
W

div(f ~F ) dV =

∫∫∫
W
∇f · ~F dV +

∫∫∫
W
fdiv ~F dV.

By the divergence theorem, the term on the left equals
∫∫
∂W (f ~F ) · d~S. Rearranging the terms

a bit, we have an integration by parts formula∫∫∫
W
fdiv ~F dV =

∫∫
∂W

(f ~F ) · d~S −
∫∫∫

W
∇f · ~F dV.
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D1. Well,

curl (curl ~F ) =


∂x

∂y

∂z

×


∂x

∂y

∂z

×

F1

F2

F3




=


∂x

∂y

∂z

×

∂yF3 − ∂zF2

∂zF1 − ∂xF3

∂xF2 − ∂yF1



=


∂yxF2 − ∂yyF1 − ∂zzF1 + ∂zxF3

∂zyF3 − ∂zzF2 − ∂xxF2 + ∂xyF1

∂xzF1 − ∂xxF3 − ∂yyF3 + ∂yzF2



=


∂xxF1 + ∂xyF2 + ∂xzF3 − ∂xxF1 − ∂yyF1 − ∂zzF1

∂yxF1 + ∂yyF2 + ∂yzF3 − ∂zzF2 − ∂yyF2 − ∂xxF2

∂zxF1 + ∂zyF2 + ∂zzF3 − ∂xxF3 − ∂yyF3 − ∂zzF3



=


∂x(div ~F )−∆F1

∂y(div ~F )−∆F2

∂z(div ~F )−∆F3


= ∇(div ~F )−∆~F .

D2. Taking the curl of Maxwell’s third equation and using problem D1, we have

∇(div ~E)−∆ ~E = curl

(
−∂

~B

∂t

)
.

On the left side, the first term vanishes because of Maxwell’s first equation. On the right side,
∂
∂t commutes with curl, because they involve different derivatives. [Compute this out if you like.]

Therefore

−∆ ~E = − ∂

∂t
curl ~B.

Plugging Maxwell’s fourth equation into the right side produces the wave equation.
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E. Let f(α, β) = sinα+ sinβ + sin(π − α− β). The first and second partial derivatives are

∂f

∂α
= cosα− cos(π − α− β),

∂f

∂β
= cosβ − cos(π − α− β),

∂

∂α

∂f

∂α
= − sinα− sin(π − α− β),

∂

∂β

∂f

∂β
= − sinβ − sin(π − α− β),

∂

∂β

∂f

∂α
= − sin(π − α− β).

The critical points occur where ∂f
∂α = ∂f

∂β = 0, so where cosα = cos(π − α− β) = cosβ. Because

α, β, and π − α− β are all non-negative, the unique critical point is

α = β = π/3 = π − α− β.

Now we perform the second derivative test. At the critical point, ∂
∂α

∂f
∂α = ∂

∂β
∂f
∂β = −

√
3 and

∂
∂β

∂f
∂α = −

√
3/2. Because ∂

∂α
∂f
∂α

∂
∂β

∂f
∂β −

(
∂
∂β

∂f
∂α

)2
= 3 − 3/4 > 0, the critical point is a local

maximum or minimum. Because ∂
∂α

∂f
∂α < 0, it must be a local maximum. The value of f at

this point is 3
√

3/2. If we insist that α, β, γ > 0, then we are finished, because the domain of

optimization has no boundary. If we allow one of the angles to degenerate to 0, then the other

two angles go to π/2, and f has the value 2, which is less than its value at the critical point.

Therefore, even if we consider degenerate triangles, f is maximized at α = β = γ = π/3.

F1. Well,

z4 = ((x+ iy)2)2 = ((x2 − y2) + i(2xy))2 = ((x2 − y2)2 − 4x2y2) + i(4(x2 − y2)xy).

Therefore the vector field is

〈(x2 − y2)2 − 4x2y2 + c1, 4(x2 − y2)xy + c2〉.

F2. The black part of the fractal, representing those values of ~c for which (0, 0) never escapes,

consists of just the origin (0, 0). Every other point in the plane is non-black. These points are

colored according to their distance from the origin, with the colors changing more quickly as we

approach the origin. Here is a plot of the fractal in [−2, 2]× [−2, 2].
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G. [I’ll omit the sketch.] The integral to compute is∫ 1

0

∫ x

x2

∫ x

0
x+ 2y dz dy dx =

∫ 1

0

∫ x

x2
x2 + 2xy dy dx

=

∫ 1

0

[
x2y + xy2

]y=x
y=x2

dx

=

∫ 1

0
x3 + x3 − x4 − x5 dx

=

[
1

2
x4 − 1

5
x5 − 1

6
x6
]1
0

=
1

2
− 1

5
− 1

6

=
2

15
.

H. Well,

−1

ρ
∇p+∇ · T =


−1
ρ∂xp+ ∂xT11 + ∂yT12 + ∂zT13

−1
ρ∂yp+ ∂xT21 + ∂yT22 + ∂zT23

−1
ρ∂zp+ ∂xT31 + ∂yT32 + ∂zT33



=


∂x(T11 − 1

ρp) + ∂yT12 + ∂zT13

∂xT21 + ∂y(T22 − 1
ρp) + ∂zT23

∂xT31 + ∂yT32 + ∂z(T33 − 1
ρp)


= ∇ · U,

where

U =


T11 − 1

ρp T12 T13

T21 T22 − 1
ρp T23

T31 T32 T33 − 1
ρp

 .
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I. Let S be the portion of the ellipsoid (x/4)2 + (y/3)2 + (z/2)2 = 1 where x, y, z ≤ 0. Orient S

so that it has upward-pointing normals. Compute the flux of ~F = 〈0, 0, z〉 across S.

We parametrize the ellipsoid by

~G(φ, θ) = (4 sinφ cos θ, 3 sinφ sin θ, 2 cosφ).

Then

~Gφ = 〈4 cosφ cos θ, 3 cosφ sin θ,−2 sinφ〉,
~Gθ = 〈−4 sinφ sin θ, 3 sinφ cos θ, 0〉,

~n = ~Gθ × ~Gφ

= 〈−6 sin2 φ cos θ, 8 sin2 φ sin θ,−12 sinφ cosφ〉.

Let’s check that we have oriented ~n correctly. For example, the point (−4, 0, 0) is on S. At that

point, φ = π/2 and θ = π, so ~n = 〈6, 0, 0〉. This normal vector points “into” the ellipsoid, and

hence ~n is upward-pointing on S. The flux is∫∫
S

~F · d~S =

∫ 3π/2

π

∫ π

π/2

~F (~G(φ, θ)) · ~n(φ, θ) dφ dθ

=

∫ 3π/2

π

∫ π

π/2
2 cosφ · −12 sinφ cosφ dφ dθ

= −24
π

2

∫ π

π/2
cos2 φ sinφ dφ

= −12π

[
−1

3
cos3 φ

]π
π/2

= 4π
(

cos3 π − cos3
π

2

)
= −4π.

Let’s check that the sign is correct. The normal ~n points up, while ~F points down. So we expect

the flux to be negative.
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