A.

$$
\vec{v}+\vec{w}=\langle 0,2,3\rangle .
$$

$$
7 \vec{v}=\langle-14,21,7\rangle .
$$

$$
\vec{v} \cdot \vec{w}=-4+-3+2=-5 .
$$

$$
\operatorname{proj}_{\vec{w}} \vec{v}=\frac{\vec{v} \cdot \vec{w}}{\vec{w} \cdot \vec{w}} \vec{w}=\frac{-5}{9}\langle 2,-1,2\rangle=\langle-10 / 9,5 / 9,-10 / 9\rangle .
$$

$$
\vec{v} \times \vec{w}=\ldots=\langle 7,6,-4\rangle .
$$

B. [By the way, this is a simplified version of Section 14.3 Exercise 80.] First,

$$
f_{x}=3 x^{2}+2 b x y+c y^{2} \quad \Rightarrow \quad f_{x x}=6 x+2 b y
$$

and

$$
f_{y}=b x^{2}+2 c x y+3 y^{2} \quad \Rightarrow \quad f_{y y}=2 c x+6 y
$$

Therefore

$$
0=f_{x x}+f_{y y}=(2 c+6) x+(2 b+6) y .
$$

Because this equation holds for all x and y, it must be true that $2 c+6=0$ and $2 b+6=0$. In other words, $b=c=-3$.
C. Because $\vec{r}(t)$ is parametrized by arc length,

$$
\begin{aligned}
1 & =\left\|\vec{r}^{\prime}(t)\right\| \\
\Rightarrow \quad 1 & =\left\|\vec{r}^{\prime}(t)\right\|^{2} \\
& =\vec{r}^{\prime}(t) \cdot \vec{r}^{\prime}(t) \\
\Rightarrow \quad 0 & =\vec{r}^{\prime \prime}(t) \cdot \vec{r}^{\prime}(t)+\vec{r}^{\prime}(t) \cdot \vec{r}^{\prime \prime}(t) \\
& =2 \vec{r}^{\prime}(t) \cdot \vec{r}^{\prime \prime}(t) .
\end{aligned}
$$

Therefore $\vec{r}^{\prime}(t)$ and $\vec{r}^{\prime \prime}(t)$ are perpendicular, and

$$
\left\|\vec{r}^{\prime}(t) \times \vec{r}^{\prime \prime}(t)\right\|=\left\|\vec{r}^{\prime}(t)\right\|\left\|\vec{r}^{\prime \prime}(t)\right\|=\left\|\vec{r}^{\prime \prime}(t)\right\| .
$$

The expression for $\kappa(t)$ then simplifies down to

$$
\kappa(t)=\left\|\vec{r}^{\prime \prime}(t)\right\|=\left\|d \vec{r}^{\prime} / d t\right\|=\left\|d \vec{r}^{\prime} / d s\right\|
$$

which is the usual definition for κ.
D. By the definition of \vec{T} and the assumption that \vec{r} is parametrized by arc length,

$$
\vec{T}(t)=\frac{\vec{r}^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}=\vec{r}^{\prime}(t) .
$$

Differentiating both sides of that equation with respect to $s=t$ gives

$$
d \vec{T} / d s=\vec{T}^{\prime}(t)=\vec{r}^{\prime \prime}(t)
$$

Then, by the definition of the normal \vec{N},

$$
\begin{aligned}
\vec{N} & =\frac{\vec{T}^{\prime}(t)}{\left\|\vec{T}^{\prime}(t)\right\|} \\
& =\frac{d \vec{T} / d s}{\left\|\vec{r}^{\prime \prime}(t)\right\|} \\
& =\frac{d \vec{T} / d s}{\kappa} \\
\Rightarrow \quad d \vec{T} / d s & =\kappa \vec{N}(t) .
\end{aligned}
$$

So we have derived the first Frenet-Serret equation.
E1. [By the way, this is Section 14.2 Exercise 15.] First, plugging in $y=m x$ gives

$$
f(x, m x)=\frac{x^{3}+m^{3} x^{3}}{x m^{2} x^{2}}=\frac{1+m^{3}}{m^{2}} .
$$

Therefore the limit along the line $y=m x$ is

$$
\lim _{x \rightarrow 0} \frac{1+m^{3}}{m^{2}}=\frac{1+m^{3}}{m^{2}}
$$

Notice that different slopes m produce different limits.
E2. The apparent limit of $f(x, y)$ as $(x, y) \rightarrow(0,0)$ depends on how (x, y) approaches $(0,0)$. Therefore the limit does not actually exist.

F1. [By the way, this is an alternate form of Section 11.3 Exercise 55, which was assigned as homework.] Well,

$$
\begin{aligned}
r^{2} & =\cos ^{2} \theta-\sin ^{2} \theta \\
\Rightarrow \quad r^{4} & =(r \cos \theta)^{2}-(r \sin \theta)^{2} \\
\Rightarrow \quad\left(x^{2}+y^{2}\right)^{2} & =x^{2}-y^{2} .
\end{aligned}
$$

F2. Using y^{\prime} as shorthand for $d y / d x$, we compute

$$
\begin{aligned}
\left(x^{2}+y^{2}\right)^{2} & =x^{2}-y^{2} \\
\Rightarrow 2\left(x^{2}+y^{2}\right)\left(2 x+2 y y^{\prime}\right) & =2 x-2 y y^{\prime} \\
\Rightarrow\left(y+2 y\left(x^{2}+y^{2}\right)\right) y^{\prime} & =x-2 x\left(x^{2}+y^{2}\right) \\
\Rightarrow y^{\prime} & =\frac{x}{y} \cdot \frac{1-2\left(x^{2}+y^{2}\right)}{1+2\left(x^{2}+y^{2}\right)} .
\end{aligned}
$$

F3. We are looking for points where $x\left(1-2\left(x^{2}+y^{2}\right)\right)=0$. There are two possibilities: $x=0$ or $x^{2}+y^{2}=1 / 2$.

Plugging $x=0$ into the answer for Question F1 implies that $y=0$. However, the derivative computed in Question F2 is undefined at (0,0), leading us to suspect, without certainty, that the tangent line there is not horizontal.

Plugging $x^{2}+y^{2}=1 / 2$ into the answer for Question F1 implies that $x^{2}-y^{2}=1 / 4$. Together these equations imply that $x^{2}=3 / 8$ and $y^{2}=1 / 8$. So we conclude that $x= \pm \sqrt{3 / 8}$ and $y= \pm \sqrt{1 / 8}$.
[The preceding answer is sufficient for a timed exam without a graphing aid. In practice, one would graph the function. The graph confirms that the four points described by $x= \pm \sqrt{3 / 8}$ and $y= \pm \sqrt{1 / 8}$ have horizontal tangent lines. The graph also shows that $(0,0)$ is a point where the curve crosses itself and thus does not have a well-defined tangent line. One can get some insight without graphing, too. Evaluate the limit of y^{\prime} as $(x, y) \rightarrow(0,0)$ along the curve. Use polar coordinates. The limit is $\cos \theta / \sin \theta$. For the tangent line to be horizontal, this limit should be 0 . But then $\cos \theta$ approaches 0 along the curve, which means that the curve approaches the origin vertically, and therefore the tangent line cannot be horizontal.]

G1. [By the way, this is nearly identical to an example that we discussed in class. We showed a contour plot, constructed the surface out of Play-Doh, and graphed the surface in Mathematica. I will omit the plot in these solutions.]

G2. Briefly, $\nabla f=\left\langle 2 x \sin y, x^{2} \cos y\right\rangle$.
G3. The function is differentiable, so

$$
D_{\vec{v}} f(\vec{p})=\nabla f(\vec{p}) \cdot \vec{v}=\langle 2 \sin 2, \cos 2\rangle \cdot\langle-1 / \sqrt{2}, 1 / \sqrt{2}\rangle=\langle-\sqrt{2} \sin 2,(\cos 2) / \sqrt{2}\rangle .
$$

