You have 150 minutes. No notes, books, calculators, computers, etc. are allowed.
Show all of your work, in as organized a manner as possible. Incorrect answers with solid work often earn partial credit. Correct answers without explanatory work rarely earn full credit. It is often a good idea to draw a picture.

You might find these calculus facts helpful:

$$
\begin{aligned}
\frac{d}{d x} \arctan x & =\frac{1}{1+x^{2}} \\
\frac{d}{d x}\left(\frac{1}{2} x-\frac{1}{4} \sin (2 x)\right) & =\sin ^{2} x \\
\frac{d}{d x}\left(\frac{1}{2} x+\frac{1}{4} \sin (2 x)\right) & =\cos ^{2} x
\end{aligned}
$$

Perform as much algebraic simplification as you can. Do not bother to do non-trivial arithmetic. Mark your final answer clearly. Good luck.

A1. Let P be the plane though the point \vec{p} with normal vector \vec{n}. Let Q be the plane though the point \vec{q} with normal \vec{m}. Let \vec{s} be a point at which P and Q intersect. Parametrize the line, along which P and Q intersect. Give your answer in terms of $\vec{p}, \vec{n}, \vec{q}, \vec{m}$, and \vec{s}.

A2. In which special cases will your answer for Problem A1 not work? Explain.

B1. Let $\vec{F}=\left\langle e^{y z}, x e^{y z} z, x e^{y z} y\right\rangle$. Find a potential function for \vec{F}.

B2. Let C be parametrized by $\vec{r}(t)=\left(\cos t, t^{2}, \log (t+1)\right)$ for $0 \leq t \leq 1$. Compute $\int_{C} \vec{F} \cdot d \vec{s}$.

C1. Find all of the critical points of $f(x, y)=x^{3}+y^{4}-6 x-2 y^{2}$.

C2. For any one of those points, determine whether it is a local max, min, saddle, etc.

D1. Let $\vec{F}=\left\langle-e^{z}, 1 /\left(1+x^{2}\right),-2\right\rangle$. Show that $\vec{F}=\operatorname{curl} \vec{G}$, where $\vec{G}=\left\langle 2 y, e^{z},-\arctan x\right\rangle$.

D2. Compute $\iint_{S} \vec{F} \cdot d \vec{S}$, where S is the part of the paraboloid $z=4-x^{2}-y^{2}$ above the x - y-plane, with upward-pointing normals.

E1. Let W be the three-dimensional region that lies above the x - y-plane, lies inside the sphere of radius 3 centered at the origin, and is bounded by $x=1, y=0$, and $x=y$. Draw it.

E2. Compute the integral of $f(x, y, z)=z$ over W.
F. Optimize $2 x+5 y$ on the ellipse $\left(\frac{x}{4}\right)^{2}+\left(\frac{y}{3}\right)^{2}=1$.
G. For any scalar function $f(x, y, z)$, define $\Delta f=f_{x x}+f_{y y}+f_{z z}$. Show that $\Delta f=\operatorname{div}(\operatorname{grad} f)$.
H. Guess the product rule that begins " $\operatorname{div}(f \vec{F})=\ldots$. . Your answer should be sensible, with no operation applied illegally, but you do not need to check algebraically that it is correct.

