Day 22 CS 358, Spring 2018

A. In the (non-obscure, readable) programming language of your choice, implement the
continued fractions approximation algorithm described in class. 1 wrote mine as a Python

function. Here is a precise specification. The inputs are x0 and d such that:
1. x0 is a floating-point number such that 0 < zg < 1.

2. dis a non-negative integer — the “depth”, meaning that the approximation truncates after

aq by assuming that x4 = 0.
The output is a pair (array, list, struct, object, etc.) [a, bl such that
1. a is a non-negative integer.
2. b is a positive integer, such that ged(a,b) = 1 and a/b ~ x.

This paragraph is not part of the assignment, but: You might want to test your code (to
varying depths) against the two examples in Mermin’s Appendix K. You also might want to

think about how you would prove that your output satisfies gecd(a,b) = 1. My proof is easy.

B. What happens if you run your code (to varying depths) on input x0 equal to 0.5?7 What
about 0.27 0.37 0.3337 1.0 / 3.07 Why? (My code does interesting things. Maybe yours

will too, or maybe not.)



