
Complex Numbers CS 358, Spring 2018

This document teaches you the basics of complex numbers: arithmetic, conjugation, expo-

nentiation, linear algebra, and their geometric meaning.

1 Arithmetic

A complex number is a quantity of the form a+ bi, where a and b are real numbers and i2 = −1.

Calculations with complex numbers are not difficult. Just use all of the usual algebraic rules,

and replace i2 with −1 whenever necessary. Here’s addition:

(a+ bi) + (c+ di) = a+ c+ bi+ di = (a+ c) + (b+ d)i.

Similarly, subtraction is

(a+ bi)− (c+ di) = (a− c) + (b− d)i.

Multiplication is a little more interesting:

(a+ bi)(c+ di) = ac+ adi+ bic+ bdi2 = (ac− bd) + (ad+ bc)i.

Division is more difficult. It’s helpful to think of division as multiplication by the reciprocal:

a+ bi

c+ di
= (a+ bi) · 1

c+ di
.

But how do you compute the reciprocal? Use this trick:

1

c+ di
=

1

c+ di
· c− di
c− di

=
c− di
c2 + d2

=
c

c2 + d2
− d

c2 + d2
i. (1)

It doesn’t work if c2+d2 = 0, but that happens only when you’re trying to compute the reciprocal

of 0. Division by zero is illegal in the complex numbers, just as it’s illegal in the real numbers.

The set of complex numbers is denoted C. When I say that the complex numbers satisfy all

of the usual rules of algebra, I specifically mean these nine rules:

• Associativity of addition: (x+ y) + z = x+ (y + z) for all x, y, z ∈ C.

• Identity in addition: The complex number 0 = 0 + 0i satisfies 0 + x = x = x+ 0 for all x.

• Inverses in addition: For any complex number x = a+ bi, there exists a complex number

−x = −a+−bi, which satisfies x+−x = 0 = −x+ x.

• Commutativity of addition: x+ y = y + x for all x, y.

• Associativity of multiplication: (xy)z = x(yz) for all x, y, z.

• Identity in multiplication: The complex number 1 = 1 + 0i satisfies 1x = x = x1 for all x.
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• Inverses in multiplication: For any non-zero complex number x, there exists a complex

number x−1, which satisfies xx−1 = 1 = x−1x. (Equation 1 tells us how to compute x−1.)

• Commutativity of multiplication: xy = yx for all x, y.

• Distributivity: x(y + z) = xy + xz and (x+ y)z = xz + yz for all x, y, z.

In the mathematical jargon, we say that C is a field. The set R of real numbers is also a field.

In one way, R is nicer than C: R has an ordering <, so that we can talk about whether x < y,

x ≥ y, etc. for real numbers x, y. Those concepts don’t exist in C. But C is nicer than R
in a different way: It is algebraically closed, meaning that every non-constant polynomial with

coefficients in C has a root in C. In contrast, there are polynomials with real coefficients that

do not have any real roots. The most important example is x2 + 1. Why?

The complex numbers have another operation, which has no analogue in the real numbers:

conjugation. The conjugate of a complex number a+ bi is defined as

a+ bi = a− bi.

Notice that the conjugate of a real number a = a+ 0i is just a− 0i = a again. So conjugation

of real numbers is trivial, which is why we never talk about it. Notice also that

(a+ bi) · a+ bi = a2 + b2.

This was the trick that helped us compute the reciprocal in Equation 1. Conjugation also plays

well with arithmetic; for example,

(a+ bi)(c+ di) = a+ bi · c+ di.

Exercise A: Twice now I’ve asserted that (a+ bi) ·a+ bi = a2 + b2, without any justification.

Prove it, by showing all steps of the algebra required.

Exercise B: Complete this exercise in the programming language of your choice (as long as it’s

common and readable, such as Python or C, rather than esoteric or unreadable, such as Whites-

pace). Define a data type for complex numbers. It should use the language’s floating-point

numbers to approximate the underlying real numbers. Write subroutines (functions, methods,

etc.) to perform addition, multiplication, conjugation, subtraction, and division. This should

all be short and simple; don’t over-engineer it.

2 Geometry

Because each complex number x = a+ bi is made up of two real numbers a and b, it is natural

to picture C as the two-dimensional real plane R2. That is, the number a + bi plots at the
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point (a, b). The horizontal axis consists of the numbers of the form a + 0i — that is, the real

numbers. The vertical axis consists of the numbers of the form 0 + bi. They are called the

imaginary numbers.

Let’s take a moment to talk about this terminology. First, the terms “real” and “imaginary”

are important in the vocabulary of math, so you should learn to use them correctly. They are not

antonyms. Most complex numbers are neither real nor imaginary, and the number 0 is both real

and imaginary. If you want to say that a number is not real, then don’t say that it’s imaginary;

instead, say that it’s “not real” or “non-real”. Second, you should ignore the non-mathematical

meanings of “real” and “imaginary”. You should not intuit that the real numbers actually

exist and the other complex numbers actually don’t exist. None of these numbers exist in our

universe; they are concepts, not physical objects, and they live only in the human mind. (There

is a minority view in the philosophy of science, which holds that mathematical concepts such

as these are the only things that exist, and the physical universe is a phenomenon that emerges

from that math. If you adopt that view, then real, imaginary, and other complex numbers are

again equally existent.)

The norm or magnitude |a+ bi| of a complex number a+ bi is defined as its distance to the

origin. That is,

|a+ bi| =
√
a2 + b2 =

√
(a+ bi) · a+ bi.

Addition has a simple geometric interpretation. Adding a complex number x = a + bi to a

complex number y = c + di has the effect of translating y a units to the right and b units up.

Scaling a complex number c+di by a real number a has the effect of stretching c+di away from

the origin by a factor of a. In other words, if we view C as the vector space R2, then addition

and real scaling have their usual geometric interpretation.

However, C is more than just R2, because it has two additional operations: conjugation and

complex multiplication. Geometrically, conjugation has the effect of flipping points across the

real axis. We’ll explain the geometric meaning of multiplication in a moment. First it will be

helpful to change coordinates.

Recall (from some calculus course) the concept of polar coordinates. Given a point (a, b)

in the plane, let r be the distance from the origin to that point, and let θ be the angle, at the

origin, measured counterclockwise from the positive real axis to (a, b). It is easy to convert from

polar coordinates (r, θ) to Cartesian coordinates (a, b): a = r cos θ and b = r sin θ. So

a+ ib = r cos θ + ir sin θ = r(cos θ + i sin θ).

It’s harder to convert from Cartesian to polar coordinates. Well, r =
√
a2 + b2 isn’t hard,

but computing θ requires several cases. Most programming languages offer a function, called

something like atan2, to compute θ from a and b.
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3 Exponential

In the real numbers, the exponential function is defined as the power series

exp(x) =

∞∑
k=0

1

k!
xk = 1 + x+

1

2
x2 +

1

6
x3 +

1

24
x4 + · · · . (2)

This function has many miraculous properties, the most important of which is probably

exp(x) · exp(y) = exp(x+ y).

Let’s plug our favorite real numbers into exp. First, exp(0) = 1. Second,

exp(1) =
1

0!
+

1

1!
+

1

2!
+

1

3!
+

1

4!
+ · · · = 2.718 . . . .

We give the number exp(1) a special name: e. Then exp(2) = exp(1 + 1) = exp(1) · exp(1) = e2.

Using induction, you can prove that exp(n) = en for any positive integer n, and then for all

integers n. For this reason the function exp(x) is often denoted ex. (But the function exp is

more fundamental than the number e. You should view the number as an emergent phenomenon

of the function.)

The same power series function definition (Equation 2) works for complex numbers x. I

mean, you can plug in any complex number a+ bi for x, compute the required powers, divide by

the required factorials, and perform the required summation (at least in principle). The complex

exponential function still has that crucial sum-product property

ea+biec+di = e(a+bi)+(c+di).

You already know what exp does to complex numbers x of the form a + 0i, because those

are just real numbers. But what about imaginary numbers x = ib? When one examines

the power series closely, something surprising happens: eib = cos b + i sin b. The exponential

function contains the trigonometric functions, even though Equation 2 seems not to be related

to trigonometry at all.

Exercise C: Again using your complex number data type, write code to compute the complex

exponential function. Do not use the power series expansion. Instead, derive and implement an

approach that uses trigonometric functions and real exponentiation.

4 Geometry Revisited

Notice that ∣∣∣eib∣∣∣ = |cos b+ i sin b| = cos2 b+ sin2 b = 1
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for all b. So the exponential function maps the imaginary axis onto the unit circle (and the real

axis onto the positive real axis). The exponential function gives us another way to view polar

coordinates:

a+ ib = r(cos θ + i sin θ) = reiθ.

Multiplication is especially simple in this format. If c+di = seiφ is another complex number,

then

(a+ bi)(c+ di) = reiθseiφ = (rs)ei(θ+φ).

This is algebra, but we can immediately interpret it as geometry. Multipliying a complex number

x = reiθ by a complex number y = seiφ has the effect of scaling y by r and rotating y through

the angle θ about the origin.

Exercise D: Describe all complex numbers whose exponentials are real. Describe all complex

numbers whose exponentials are imaginary. Describe all complex numbers whose exponentials

are both real and imaginary.

5 Linear Algebra

Your linear algebra course was probably focused on vector spaces over the real numbers, meaning

that all scalars were real numbers. But linear algebra works just as well over the complex

numbers. If you have two matrices of complex numbers, then you can add and multiply them

just as you do for real matrices. For example, if A is M ×N and B is N × P , then the product

matrix AB is M × P and

(AB)ij =

N∑
k=1

AikBkj .

The usual N×N identity matrix I satisfies AI = A = IA for all N×N matrices A. You can also

scale complex matrices by complex numbers, just as you scale real matrices by real numbers.

And you can compute determinants and eigensystems and all of that. Because C is algebraically

closed, a complex N × N matrix always has N eigenvalues. So in some ways complex linear

algebra is easier than real linear algebra.

CN is the complex vector space consisting of all complex N × 1 column matrices. It has a

standard basis

~e1 =



1

0

0
...

0


, ~e2 =



0

1

0
...

0


, . . . , ~eN =



0

0

0
...

1


.
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But this is computer science, so we index from 0:

~e0 =



1

0

0
...

0


, ~e1 =



0

1

0
...

0


, . . . , ~eN−1 =



0

0

0
...

1


.

But this is quantum theory, so we use the ket notation invented by physicist Paul Dirac:

|0〉 =



1

0

0
...

0


, |1〉 =



0

1

0
...

0


, . . . , |N − 1〉 =



0

0

0
...

1


.

This ket notation has a reputation for scaring people, but it shouldn’t, because it’s just

notation. Take ~e0 vs. |0〉 for example. Instead of using “~ ” to signal that we’re talking about a

vector, we use “| 〉”. Instead of putting the “0” in a subscript, we put it inside the “| 〉”.

Because this is computer science, we often write the indices in binary. For example, in

C4 we write |00〉 , |01〉 , |10〉 , |11〉 instead of |0〉 , |1〉 , |2〉 , |3〉. Ambiguities then occasionally arise

between numeric bases. For example, is |11〉 the 4th standard basis vector or the 12th? To

clarify, you add a subscript inside the ket, as in |112〉 or |1110〉. (The subscript itself is always in

base 10...where 10 is ten.) But you have to use these subscripts only rarely, because the numeric

base is usually clear from context.

Exercise E: In C8, what is |110〉?
In math notation, when we want to talk about an unspecified vector in the abstract, we

might use a generic symbol such as ~v or ~w. In ket notation, the analogous symbols are |v〉 and

|w〉. But for historical reasons it’s more common to use Greek letters than Roman letters, such

as in |ψ〉 and |φ〉.
Let’s emphasize that the stuff inside the “| 〉” is not the numerical value of the vector, but

rather just a name for the vector. You can’t figure out the vector’s value from just its name.

For example, in C2 there are two special vectors denoted |+〉 and |−〉. Is it true that

|+〉 =

[
+

+

]
, |−〉 =

[
−
−

]
?

No, that doesn’t make any sense at all. Rather, they are defined to be

|+〉 =

 1√
2
1√
2

 , |−〉 =

 1√
2

− 1√
2

 .
In math notation they would be written as something like ~v+ and ~v− probably.
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6 Hermitian Inner Product

In real linear algebra, the dot product is a fundamental operation. All of Euclidean geometry in

RN is a consequence of the dot product. For example, the length of a vector ~v is
√
~v · ~v, and the

angle between two unit vectors ~v and ~w is arccos(~v · ~w). The dot product relates to transposition

via the equation ~v · ~w = ~v> ~w. In fact, the entire transposition operation on matrices exists

because of the dot product.

The best way to extend these concepts to complex matrices is to replace transposition with

conjugate transposition, as follows. For any complex matrix A, define the conjugate-transpose

A∗ to be A∗ = A
>

. That is, to compute A∗, you conjugate every entry in A and then transpose

that conjugated matrix. Because conjugation plays well with arithmetic, the conjugate-transpose

behaves much like the transpose; for example, (AB)∗ = B∗A∗, just as (AB)> = B>A>.

If |ψ〉 is N × 1, then there is a special notation for the conjugate transpose:

〈ψ| = |ψ〉∗ .

For example, in C2,

|ψ〉 =

[
1 + 3i

2− i

]
⇒ 〈ψ| = |ψ〉∗ =

[
1− 3i 2 + i

]
.

Now we can define the complex analogue of the dot product. There are a couple of conven-

tions. We follow the convention used by our textbook. If |ψ〉 , |φ〉 ∈ CN , then their (Hermitian)

inner product is the complex number 〈ψ|φ〉 defined by

〈ψ|φ〉 = 〈ψ| |φ〉 = |ψ〉∗ |φ〉 .

It satisfies the following rules.

• Linearity in the second argument: 〈ψ|cφ+dω〉 = c〈ψ|φ〉+d〈ψ|ω〉 for all |ψ〉 , |φ〉 , |ω〉 ∈ CN

and all c, d ∈ C.

• Conjugate linearity in the first argument: 〈cψ + dφ|ω〉 = c〈ψ|ω〉+ d〈φ|ω〉.

• Conjugate symmetry: 〈ψ|φ〉 = 〈φ|ψ〉.

• Positive definiteness: 〈ψ|ψ〉 is a positive real number, except when |ψ〉 is the zero vector

(in which case 〈ψ|ψ〉 = 0).

With the inner product in hand, now we can define the norm or magnitude of any vector

|ψ〉 ∈ CN to be the real number

‖|ψ〉‖ =
√
〈ψ|ψ〉 =

√
〈ψ| |ψ〉 =

√
|ψ〉∗ |ψ〉.

It satisfies the following rules.
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• Positivity: ‖|ψ〉‖ > 0, unless |ψ〉 is the zero vector (in which case ‖|ψ〉‖ = 0).

• Scaling: ‖c |ψ〉‖ = |c| · ‖|ψ〉‖.

• Triangle inequality: ‖|ψ〉+ |φ〉‖ ≤ ‖|ψ〉‖+ ‖|φ〉‖.

The Cauchy-Schwarz inequality is also worth mentioning: |〈ψ|φ〉| ≤ ‖|ψ〉‖ · ‖|φ〉‖.
Exercise F: Prove that 〈ψ|ψ〉 is always real, as the definition of the norm implicitly claims.

7 Unitary Transformations

Here are a few important kinds of N×N complex matrices. A matrix H is Hermitian if H∗ = H.

A matrix S is skew-Hermitian if S∗ = −S. The set of all N × N Hermitian matrices forms a

real vector space of dimension N2. So does the set of all N ×N skew-Hermitian matrices.

Exercise G: Just for the cases N = 2 and N = 4, check that the real vector space of

N × N skew-Hermitian matrices is N2-dimensional. That is, explain why choosing a N × N
skew-Hermitian matrix is tantamount to choosing N2 real numbers.

Exercise H: Prove that if S is skew-Hermitian, then iS is Hermitian. (The converse is also

true. And H is Hermitian if and only if iH is skew-Hermitian. But I’m not asking you to prove

those extra theorems.)

A matrix U is unitary if UU∗ = I = U∗U . The set of all N ×N unitary matrices does not

form a vector space. Instead it forms a group, meaning that:

• The identity I is a unitary matrix.

• If U is unitary, then U is invertible, and U−1 is also unitary.

• If U and V are unitary, then so is the product UV .

Check these three facts on your own. This next fact is so important that I want to see your

verification.

Exercise I: Prove that unitary transformations preserve the Hermitian inner product. That

is, if U is unitary N ×N and |ψ〉 , |φ〉 ∈ CN , then the inner product of |ψ〉 with |φ〉 equals the

inner product of U |ψ〉 with U |φ〉. Then prove that ‖U |ψ〉‖ = ‖|ψ〉‖.
Because unitary matrices are important in our course, we want to have some ways to man-

ufacture them. One way is via the matrix exponential function. If A is an N ×N complex (or

real) matrix, define

exp(A) =

∞∑
k=0

1

k!
Ak = I +A+

1

2
A2 +

1

6
A3 +

1

24
A4 + · · · .

Exercise J: Prove that if S is skew-Hermitian, then exp(S) is unitary. [Hint: First show that

(exp(S))∗ = exp(−S). To do that, you must perform some term-by-term manipulations on the
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power series. If you are well trained in power series, then such manipulations should make you

nervous. But this is the nicest power series in the world, so stop worrying.]

So, to make an N × N unitary matrix, one approach is: Choose N2 real numbers. Form

a skew-Hermitian matrix S from them. Then exponentiate to get a unitary U = exp(S). The

exponential map is not injective, so differing choices of real numbers can sometimes produce the

same U . But it’s “almost injective”, and this approach can make tons of unitary matrices.

8 Matrix Calculus

Let t be a real variable. Think of it as time. Suppose that A = A(t) is a time-dependent complex

matrix. You can think of it as a matrix, each entry of which is a function of t. You can also

think of it as a curve of matrices parametrized by t. Anyway, define d
dtA = A′ = Ȧ to be the

component-wise derivative of A with respect to t. This matrix derivative obeys some reasonable

rules:

• Sum rule: d
dt(A+B) = Ȧ+ Ḃ.

• Scaling rule: d
dt(cA) = cȦ for any complex constant c.

• Product rule: d
dt(AB) = ȦB +AḂ. (Be careful about the order, because matrix multipli-

cation is not commutative.)

• Conjugate-transpose rule: d
dt(A

∗) = (Ȧ)∗. That is, the derivative of the conjugate-

transpose is the conjugate-transpose of the derivative.

Exercise K: Prove that if U = U(t) is a curve of unitary matrices, then U̇U∗ is skew-

Hermitian. [Hint: You know very little about U , so you don’t have many options.]

Now suppose that U = U(t) is a curve of unitary matrices, and define |ψ〉 = |ψ(t)〉 by

|ψ〉 = U |ψ(0)〉, where |ψ(0)〉 is some initial vector at time t = 0. We are ready to show that |ψ〉
obeys a certain differential equation known as the Schrödinger equation.

Exercise L: Prove that there exists a Hermitian H such that i ˙|ψ〉 = H |ψ〉. [Hint: First show

that ˙|ψ〉 = S |ψ〉 for a certain skew-Hermitian S.]
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