A1.
Parameters: λ.
Set S of values: $\{0,1,2,3, \ldots\}$.
PDF: $P(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda}$.
Expectation: $E[X]=\lambda$.
A2. [This is Exercise 3.31.] We are told that $X \sim \operatorname{Pois}(\lambda)$ and that $P(X=0)=0.1$. Therefore

$$
\frac{\lambda^{0}}{0!} e^{-\lambda}=0.1,
$$

which implies that $\lambda=-\log 0.1$. Then

$$
P(X \geq 2)=1-P(X=0)-P(X=1)=1-0.1-\lambda e^{-\lambda}=0.9+0.1 \cdot \log 0.1
$$

B. [This is Exercise 3.13.] There are $\binom{52}{13}$ bridge hands. Of them,

$$
\binom{4}{1}\binom{13}{4}\binom{13}{3}^{3}
$$

follow the $(4,3,3,3)$ pattern, and

$$
\binom{4}{1}\binom{3}{1}\binom{13}{4}^{2}\binom{13}{3}\binom{13}{2}
$$

follow the $(4,4,3,2)$ pattern. Instead of computing $P(4,4,3,2)$ and $P(4,3,3,3)$ explicitly, let's just compute their ratio:

$$
\left.\begin{array}{rl}
\frac{P(4,4,3,2)}{P(4,3,3,3)} & =\frac{\binom{4}{1}\binom{3}{1}\binom{13}{4}^{2}\binom{13}{3}\binom{13}{2}}{\binom{4}{1}} \\
& \left.=\frac{\binom{13}{4}\binom{13}{4}}{4}\right)^{3} \\
4 \\
2
\end{array}\right)
$$

So the $(4,4,3,2)$ pattern is more than twice as probable as the $(4,3,3,3)$ pattern.
C1. First,

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\frac{n(n-1) \cdots(n-k+1)}{k!} .
$$

There are k factors in the numerator. When $n \gg k$, all of these factors are close to n. Therefore the fraction is close to n^{k} / k !.

C2. Well,

$$
\begin{aligned}
\frac{\binom{r}{k}\binom{b}{n-k}}{\binom{r+b}{n}} & \approx \frac{\frac{r^{k}}{k!\frac{b^{n-k}}{(n-k)!}}}{\frac{(r+b)^{n}}{n!}} \\
& =\frac{n!}{k!(n-k)!}\left(\frac{r}{r+b}\right)^{k}\left(\frac{b}{r+b}\right)^{n-k} \\
& =\frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k},
\end{aligned}
$$

where $p=r /(r+b)$. This is the density of a random variable $Y \sim \operatorname{Binom}(n, p)$.
C3. Suppose that drawing a red ball is a "success" and drawing a blue ball is a "failure". Then $X \sim \operatorname{Hyper}(r, b, n)$ counts the number of successes when sampling without replacement, while $Y \sim \operatorname{Binom}(n, p)$ counts the number of successes when sampling with replacement. The simplification makes sense when $n \ll r+b$, because there is little difference between sampling with and without replacement, when we are sampling only a small number (n) of objects from a huge pool (size $r+b$).
D. Let G be the event that the defendant is guilty and D the event that the DNA samples match. We wish to find

$$
P(G \mid D)=\frac{P(D \mid G) P(G)}{P(D \mid G) P(G)+P\left(D \mid G^{c}\right) P\left(G^{c}\right)}
$$

We are told that $P(G)=1 / 10$ and $P\left(D \mid G^{c}\right)=1 / 100$. Also it is reasonable to assume that $P(D \mid G)=1$. Therefore

$$
P(G \mid D)=\frac{1 / 10}{1 / 10+(1 / 100) \cdot(9 / 10)}=\frac{100}{109}
$$

[This probability is about 92%. In my opinion, it is not "beyond a reasonable doubt".]
E. [This is essentially Example 3.7 with a twist.] Let X be the amount of money won. Then

$$
E[X]=0 \cdot P(X=0)+1 \cdot P(X=1)=P(X=1)
$$

To compute $P(X=1)$ is to compute the probability of winning a game of craps:

$$
\begin{aligned}
P(X=1)= & P(7)+P(11)+\sum_{k \in\{4,5,6,8,9,10\}} P(k) P(k \text { before } 7) \\
= & P(7)+P(11)+\sum_{k \in\{4,5,6,8,9,10\}} P(k) \frac{P(k)}{P(k)+P(7)} \\
= & P(7)+P(11)+\frac{(3 / 36)^{2}}{3 / 36+6 / 36}+\frac{(4 / 36)^{2}}{4 / 36+6 / 36}+\frac{(5 / 36)^{2}}{5 / 36+6 / 36} \\
& +\frac{(5 / 36)^{2}}{5 / 36+6 / 36}+\frac{(4 / 36)^{2}}{4 / 36+6 / 36}+\frac{(3 / 36)^{2}}{3 / 36+6 / 36} .
\end{aligned}
$$

[By the way, the answer is approximately 0.4929.]

