A1. Well,

$$
\begin{aligned}
1 & =\int_{1}^{\infty} c x^{-2} d x \\
& =c \lim _{b \rightarrow \infty}\left[-x^{-1}\right]_{1}^{b} \\
& =c \lim _{b \rightarrow \infty}\left(-\frac{1}{b}+1\right) \\
& =c .
\end{aligned}
$$

A2. As X varies from 1 to ∞, Y varies from 0 to $-\infty$. So the domain of f_{Y} is $(-\infty, 0]$.

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y) \\
& =P(-\log X \leq y) \\
& =P\left(X \geq e^{-y}\right) \\
& =1-F_{X}\left(e^{-y}\right) \\
\Rightarrow f_{Y}(y) & =\frac{d}{d y}\left(1-F_{X}\left(e^{-y}\right)\right) \\
& =-f_{X}\left(e^{-y}\right) \cdot\left(-e^{-y}\right) \\
& =e^{2 y} e^{-y} \\
& =e^{y} .
\end{aligned}
$$

[Notice that $F_{Y}=f_{Y}$. It is then easy to check that $\int_{-\infty}^{\infty} f_{Y}(y) d y=1$.]
B1. [This problem is a generalization of Exercise 4.38.] Using the definition of covariance and linearity of expectation, we compute

$$
\begin{aligned}
\operatorname{Cov}(X+Y, X-Y) & =E[(X+Y)(X-Y)]-E[X+Y] E[X-Y] \\
& =E\left[X^{2}-Y^{2}\right]-(E[X]+E[Y])(E[X]-E[Y]) \\
& =E\left[X^{2}\right]-E\left[Y^{2}\right]-E[X]^{2}+E[Y]^{2} \\
& =V[X]-V[Y] .
\end{aligned}
$$

So the covariance is 0 exactly when X and Y have equal variance.
B2. We must check that $P(X+Y=a, X-Y=b)=P(X+Y=a) P(X-Y=b)$ for all valid a, b. [We cannot carry out this check, because we know so little about X and Y.]
C. We model the time (in minutes) between arrivals using an exponentially distributed random variable X with parameter $\lambda=20$. Then $E[X]=1 / \lambda=1 / 20$ and $V[X]=1 / \lambda^{2}=1 / 400$.

The standard deviation is $S D[X]=\sqrt{V[X]}=1 / 20$. As a rule of thumb, X will usually be in the interval $E[X] \pm 2 S D[X]$. In this case, the interval extends into the negative numbers,
indicating that it is not a great approximation. Keeping that caveat in mind, the time between arrivals will be around 3 seconds and usually between 0 seconds and 9 seconds.

D1. [Warning: Functions like this $c x(x+y)$ appear in predator-prey studies, but not as probability density (mass) functions, to my knowledge. That is, the problem set-up is not scientifically authentic.] Well,

$$
\begin{aligned}
P(X=x) & =\sum_{y=1}^{n} P(X=x, Y=y) \\
& =\sum_{y=1}^{n} c x(x+y) \\
& =c x^{2} \sum_{y=1}^{n} 1+c x \sum_{y=1}^{n} y \\
& =c x^{2} n+\operatorname{cxn}(n+1) / 2
\end{aligned}
$$

and

$$
\begin{aligned}
P(Y=y) & =\sum_{x=1}^{m} P(X=x, Y=y) \\
& =\sum_{x=1}^{m} c x(x+y) \\
& =c \sum_{x=1}^{m} x^{2}+c y \sum_{x=1}^{m} x \\
& =c m(m+1)(2 m+1) / 6+\operatorname{cym}(m+1) / 2 .
\end{aligned}
$$

D2. By the definition of conditional probability,

$$
P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}=\frac{x(x+y)}{m(m+1)(2 m+1) / 6+y m(m+1) / 2} .
$$

