A1. To choose a full-house hand, we must choose a rank for three cards $\left(\binom{13}{1}\right.$ possibilities), three cards in that rank $\left(\binom{4}{3}\right)$, one of the other ranks for two cards $\left(\binom{12}{1}\right)$, and two cards in that rank $\left.\binom{4}{2}\right)$. Therefore the probability is

$$
\frac{\binom{13}{1}\binom{4}{3}\binom{12}{1}\binom{4}{2}}{\binom{52}{5}}
$$

A2. If we have four cards forming two pairs, then there are 48 remaining cards in the deck, and 4 of those cards will complete our hand to a full house. Therefore the probability is $4 / 48=1 / 12$.

B1. [We discussed this problem recently in class, because it came up in the practice problems.] Let G_{1} be the number of trials needed for the first success, G_{2} the number of additional trials (after the first G_{1} trials) needed for the second success, G_{3} the number of additional trials (after the first $G_{1}+G_{2}$ trials) needed for the third success, etc. Then $X=G_{1}+\cdots+G_{r}$. Each G_{k} is a geometric random variable. The G_{k} are independent, because the geometric distribution is memoryless (in other words, because the underlying Bernoulli trials are independent).

B2. In class we showed that the MGF for each G_{k} is

$$
m_{G_{k}}(t)=\frac{p e^{t}}{1+e^{t}(p-1)} .
$$

Then, because the G_{k} are independent and X is their sum,

$$
m_{X}(t)=\left(\frac{p e^{t}}{1+e^{t}(p-1)}\right)^{r}
$$

C. Let D be the event that I have the disease and T the event that I test positive for it. We are told that $P(T \mid D)=P\left(T^{c} \mid D^{c}\right)=0.95$. Also, $P(D)=0.01$ is the probability that I have the disease before receiving any test results. We wish to find

$$
\begin{aligned}
P(D \mid T) & =\frac{P(T \mid D) P(D)}{P(T \mid D) P(D)+P\left(T \mid D^{c}\right) P\left(D^{c}\right)} \\
& =\frac{0.95 \cdot 0.01}{0.95 \cdot 0.01+0.05 \cdot 0.99} \\
& =\frac{95 \cdot 1}{95 \cdot 1+5 \cdot 99} \\
& =95 / 590 \\
& =19 / 118
\end{aligned}
$$

[By the way, that's about 16\%.]
D. We begin by computing the CDF of Z :

$$
\begin{aligned}
F_{Z}(z) & =P(Z \leq z) \\
& =P(X+Y \leq z) \\
& =\iint_{R} f(x, y) d x d y
\end{aligned}
$$

where R is the set of all points (x, y) such that $x+y \leq z$. [A good solution is accompanied by a diagram showing R and thus explaining the following integration bounds. I omit the diagram in these typed solutions.] The integral equals

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f(x, y) d y d x
$$

Therefore the density of Z is

$$
\begin{aligned}
f_{Z}(z) & =\frac{d}{d z} F_{Z}(z) \\
& =\frac{d}{d z} \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f(x, y) d y d x \\
& =\int_{-\infty}^{\infty} \frac{d}{d z} \int_{-\infty}^{z-x} f(x, y) d y d x \\
& =\int_{-\infty}^{\infty} f(x, z-x) d x
\end{aligned}
$$

by the fundamental theorem of calculus.
E. Let $S_{n}=X_{1}+\cdots+X_{n}$ as usual. We wish to find n such that

$$
\begin{aligned}
0.99 & =P\left(\left|\frac{S_{n}}{n}-\mu\right| \leq \epsilon\right) \\
& =P\left(-\epsilon \leq \frac{S_{n}}{n}-\mu \leq \epsilon\right) \\
& =P\left(-\frac{\epsilon}{\sigma / \sqrt{n}} \leq Z \leq \frac{\epsilon}{\sigma / \sqrt{n}}\right)
\end{aligned}
$$

where

$$
Z=\frac{\frac{S_{n}}{n}-\mu}{\sigma / \sqrt{n}}
$$

is a standard normal random variable (approximately, for large n, by the central limit theorem). Let F be the CDF of Z. The probability above equals 0.99 when $F(\epsilon \sqrt{n} / \sigma)=0.995$. Therefore the minimum usable n is

$$
n=\left(\frac{\sigma}{\epsilon} F^{-1}(0.995)\right)^{2}
$$

[In practice, σ would be estimated from the data, and ϵ (and the 0.99) would be chosen according to the biologist's tastes and needs.]
F. Recall from class that the CDF of X is $F(x)=1-e^{-\lambda x}$. Setting $u=F(x)$ and solving for x as a function of u gives

$$
x=-\frac{1}{\lambda} \log (1-u) .
$$

So we choose u uniformly on $[0,1]$ and compute x from u using that equation.
G1. Well,

$$
\begin{aligned}
F_{X \mid X>s}(x \mid x>s) & =P(X \leq x \mid X>s) \\
& =\frac{P(X \leq x, X>s)}{P(X>s)} \\
& =\frac{\int_{s}^{x} f(t) d t}{1-F(s)} \\
\Rightarrow \quad f_{X \mid X>s}(x \mid x>s) & =\frac{d}{d x} F_{X \mid X>s}(x \mid x>s) \\
& =\frac{\frac{d}{d x} \int_{s}^{x} f(t) d t}{1-F(s)} \\
& =\frac{f(x)}{1-F(s)}
\end{aligned}
$$

by the fundamental theorem of calculus. By the way, the domain of $f_{X \mid X>s}(x \mid x>s)$ is (s, ∞) rather than $(-\infty, \infty)$. In other words, $f_{X \mid X>s}(x \mid x>s)=0$ for $x \leq s$. This claim should make intuitive sense. You can also verify it by computing

$$
\int_{s}^{\infty} f_{X \mid X>s}(x \mid x>s) d x=\frac{1}{1-F(s)} \int_{s}^{\infty} f(x) d x=\frac{1}{1-F(s)}(1-F(s))=1
$$

G2. [Because I made an error while writing this problem, it requires more computation than I intended. Grading was generous.] We are asked to compute

$$
\begin{aligned}
E[X \mid X>1] & =\int_{1}^{10} x f_{X \mid X>1}(x \mid x>1) d x \\
& =\frac{1}{1-F(1)} \int_{1}^{10} \frac{x f(x)}{1-F(1)} d x \\
& =\frac{1}{1-F(1)} \int_{1}^{10} x f(x) d x \\
& =\frac{1}{1-F(1)} \int_{1}^{10} x 0.7(0.2 x-1)^{6} d x
\end{aligned}
$$

There are two subtasks. First,

$$
F(1)=\int_{0}^{1} f(x) d x=\int_{0}^{1} 0.7(0.2 x-1)^{6} d x=\left[\frac{1}{2}(0.2 x-1)^{7}\right]_{0}^{1}=-\frac{1}{2} 0.8^{7}+\frac{1}{2} .
$$

Second, using integration by parts,

$$
\begin{aligned}
\int x 0.7(0.2 x-1)^{6} d x & =\frac{1}{2} x(0.2 x-1)^{7}-\int \frac{1}{2}(0.2 x-1)^{7} d x \\
& =\frac{1}{2} x(0.2 x-1)^{7}-\frac{1}{3.2}(0.2 x-1)^{8}+C
\end{aligned}
$$

Therefore

$$
\begin{aligned}
E[X \mid X>1] & =\frac{1}{1+\frac{1}{2} 0.8^{7}-\frac{1}{2}}\left[\frac{1}{2} x(0.2 x-1)^{7}-\frac{1}{3.2}(0.2 x-1)^{8}\right]_{1}^{10} \\
& =\frac{1}{1+0.8^{7}}\left[x(0.2 x-1)^{7}-\frac{1}{1.6}(0.2 x-1)^{8}\right]_{1}^{10} \\
& =\frac{10-\frac{1}{1.6}+0.8^{7}+\frac{1}{1.6} 0.8^{8}}{1+0.8^{7}}
\end{aligned}
$$

[By the way, that's approximately 8.01. So surviving the first year greatly increases the expected life span, from 5 to 8 years. Similar remarks apply to the life spans of humans.]

