A.A. The law of the unconscious statistician says that

$$
E\left(X^{4}\right)=\int_{-\infty}^{\infty} x^{4} f_{X}(x) d x=\int_{0}^{\infty} x^{4} \lambda e^{-\lambda x} d x
$$

A.B. First, notice that the support of Y is $(0, \infty)$. Second,

$$
F_{Y}(y)=P(Y \leq y)=P\left(X^{4} \leq y\right)=P\left(X \leq y^{1 / 4}\right)=F_{X}\left(y^{1 / 4}\right) .
$$

Then, differentiating this equation with respect to y, we obtain

$$
f_{Y}(y)=f_{X}\left(y^{1 / 4}\right) \frac{d}{d y}\left(y^{1 / 4}\right)=\lambda e^{-\lambda y^{1 / 4}} \frac{1}{4} y^{-3 / 4} .
$$

Therefore

$$
E(Y)=\int_{-\infty}^{\infty} y f_{Y}(y) d y=\int_{0}^{\infty} \frac{1}{4} y^{1 / 4} \lambda e^{-\lambda y^{1 / 4}} d y
$$

A.C. Yes, the two integrals are equal. After all, Y and X^{4} are the same random variable, so they must have the same expectation. Further, if we plug $y=x^{4}$ and $d y=4 x^{3} d x$ into the integral for $E(Y)$, and change the bounds from $(0, \infty)$ to $(0, \infty)$, then we recover the integral for $E\left(X^{4}\right)$.
B.A. By linearity of expectation,

$$
E\left(S_{n}\right)=\sum_{i=1}^{n} E\left(X_{i}\right)=\sum_{i=1}^{n} \lambda=n \lambda .
$$

B.B. Because the X_{i} are independent, their variances add:

$$
\operatorname{Var}\left(S_{n}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\sum_{i=1}^{n} \lambda=n \lambda .
$$

B.C. The expectation is unchanged. The variance should incorporate covariance terms:

$$
\begin{aligned}
\operatorname{Var}\left(S_{n}\right) & =\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+2 \sum_{i<j} \operatorname{Cov}\left(X_{i}, X_{j}\right) \\
& =n \lambda+2 \sum_{i<j}\left(E\left(X_{i} X_{j}\right)-E\left(X_{i}\right) E\left(X_{j}\right)\right) \\
& =n \lambda+2 \sum_{i<j} \lambda / 2 \\
& =n \lambda+2\binom{n}{2} \lambda / 2 \\
& =\left(n+\binom{n}{2}\right) \lambda \\
& =\frac{n^{2}+n}{2} \lambda .
\end{aligned}
$$

C. TRUE. [This statement is the definition of the marginal distribution of X.]
D. First we do a little algebra:

$$
\begin{aligned}
\int_{-\infty}^{\infty} e^{-\left(a x^{2}+b x+c\right)} d x & =\int_{-\infty}^{\infty} e^{-\left(\left(\sqrt{a} x+\frac{b}{2 \sqrt{a}}\right)^{2}-\left(\frac{b}{2 \sqrt{a}}\right)^{2}+c\right)} d x \\
& =e^{\left(\frac{b}{2 \sqrt{a}}\right)^{2}-c} \int_{-\infty}^{\infty} e^{-a\left(x+\frac{b}{2 a}\right)^{2}} d x \\
& =e^{\left(\frac{b}{2 \sqrt{a}}\right)^{2}-c} \int_{-\infty}^{\infty} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}} d x
\end{aligned}
$$

where $\mu=-\frac{b}{2 a}$ and $\sigma^{2}=\frac{1}{2 a}$. The integrand on the right is the un-normalized density for a random variable that is normally distributed with mean μ and variance σ^{2}. So the integral on the right is $\sqrt{2 \pi \sigma^{2}}=\sqrt{\pi / a}$, and the answer to the entire problem is

$$
e^{\left(\frac{b}{2 \sqrt{a}}\right)^{2}-c} \sqrt{\frac{\pi}{a}}
$$

E. Let $\sigma^{2}=4 \cdot 10^{-6}$ and let μ be the true answer. So the results are distributed as $X \sim$ $\operatorname{Norm}\left(\mu, \sigma^{2}\right)$. We are told that $P(X<0)=0.025$. We know that 95% of the normal distribution's mass is within 2σ of μ. So 2.5% of the mass is to the left of $\mu-2 \sigma$. Therefore our guess for the true answer, based on the information given, should be $\mu=2 \sigma=4 \cdot 10^{-3}$. [By the way, this problem is not realistic. The physicist would estimate the true answer by taking the average of her experimental results.]
F.A. Let time be measured in days. Then λ is the expected number of purchases per day, so $\lambda=5 / 7$. [If instead time were measured in weeks, then we would have $\lambda=5$.]
F.B. Let $X \sim \operatorname{Expo}(\lambda)$ be the time in days until his next purchase. Then $E(X)=1 / \lambda=7 / 5$.
F.C. Let $Y \sim \operatorname{Pois}(7 \lambda)$ be the number of purchases in the next 7 days. Then

$$
\begin{aligned}
P(Y \geq 3) & =1-P(Y=0)-P(Y=1)-P(Y=2) \\
& =1-e^{-7 \lambda}\left(1+7 \lambda+(7 \lambda)^{2} / 2\right) \\
& =1-e^{-5}(1+5+25 / 2) .
\end{aligned}
$$

F.D. Let $Z \sim \operatorname{Pois}(30 \lambda)$ be the number of purchases in the next 30 days. Then $E(Z)=30 \lambda=$ 150/7.
G. FALSE. [We computed an example in class where $X \sim \operatorname{Unif}(-1,1)$ and $Y=X^{2}$.]
H. By the law of total probability and the definition of conditional probability,

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{Y \mid X}(y \mid x) f_{X}(x) d x
$$

We are told that $f_{X}(x)=x e^{-x^{2} / 2}$ for x in $(0, \infty)$ and $f_{Y \mid X}(y \mid x)=x^{2} e^{-x^{2} y}$ for y in $(0, \infty)$. Therefore

$$
\begin{aligned}
f_{Y}(y) & =\int_{0}^{\infty} x^{2} e^{-x^{2} y} x e^{-x^{2} / 2} d x \\
& =\int_{0}^{\infty} x^{3} e^{-x^{2}(y+1 / 2)} d x
\end{aligned}
$$

Using integration by parts with $u=x^{2}$ and $d v=x e^{-x^{2}(y+1 / 2)} d x$, hence $d u=2 x d x$ and $v=\frac{-1}{2(y+1 / 2)} e^{-x^{2}(y+1 / 2)}+C$, we obtain

$$
f_{Y}(y)=\left[\frac{-x^{2}}{2(y+1 / 2)} e^{-x^{2}(y+1 / 2)}\right]_{x=0}^{x=\infty}-\int_{0}^{\infty} \frac{-2 x}{2(y+1 / 2)} e^{-x^{2}(y+1 / 2)} d x
$$

The first term on the right side evaluates to $0-0$. [The first 0 is from using l'Hopital's rule twice. I'll omit the details.] So we have

$$
\begin{aligned}
f_{Y}(y) & =\int_{0}^{\infty} \frac{2 x}{2(y+1 / 2)} e^{-x^{2}(y+1 / 2)} d x \\
& \left.=\frac{-1}{2(y+1 / 2)^{2}} e^{-x^{2}(y+1 / 2)}\right]_{x=0}^{x=\infty} \\
& =0-\frac{-1}{2(y+1 / 2)^{2}} e^{0} \\
& =\frac{1}{2(y+1 / 2)^{2}} .
\end{aligned}
$$

The support of Y is $(0, \infty)$.

