A.A. For each parameter, our Metropolis-Hastings algorithm proposes a new value by drawing from a normal distribution centered on the current value. Suppose that we're simulating σ, and the current value σ_{i} is close to 0 . Then there is a chance that the proposed σ^{\prime} will be zero or negative - a nonsensical result. The same danger applies to σ^{2}. But $\log \sigma$ can safely take on any real value, so it is not subject to this problem.
A.B. We do our usual transformation process. First,

$$
F_{L}(\ell)=P(L \leq \ell)=P(\log \Sigma \leq \ell)=P\left(\Sigma \leq e^{\ell}\right)=F_{\Sigma}\left(e^{\ell}\right) .
$$

Then differentiation yields

$$
f_{L}(\ell)=\frac{d}{d \ell} F_{\Sigma}\left(e^{\ell}\right)=f_{\Sigma}\left(e^{\ell}\right) e^{\ell}=e^{-\ell} e^{\ell}=1 .
$$

B.A. The random variable Y is supported on $(0, \infty)$, where it has density

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x=\int_{0}^{y} e^{-y} d x=y e^{-y}
$$

B.B. First, the conditional density is

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}=\frac{e^{-y}}{y e^{-y}}=y^{-1} .
$$

The conditional expectation is then

$$
E(X \mid Y=y)=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x=\int_{0}^{y} x y^{-1} d x=\left[\frac{1}{2} x^{2} y^{-1}\right]_{x=0}^{x=y}=y / 2 .
$$

[Here's some intuition. The conditional density says that X is uniform on $[0, y]$, which makes sense, because the joint density doesn't depend on x at all. Then, because X is uniform on $[0, y]$, its average value should be $y / 2$.]
B.C. Because $E(X \mid Y=y)=y / 2$, we immediately conclude that $E(X \mid Y)=Y / 2$.
C.A. Using some algebra and linearity of expectation, we derive

$$
m_{Y}(t)=E\left(e^{t Y}\right)=E\left(e^{t X+t c}\right)=E\left(e^{c t} e^{t X}\right)=e^{c t} E\left(e^{t X}\right)=e^{c t} m_{X}(t) .
$$

C.B. Let $Z \sim \operatorname{Norm}(0,1)$, so $m_{Z}(t)=e^{t^{2} / 2}$. Then, by problem C.A,

$$
m_{W}(t)=m_{\mu+\sigma Z}(t)=e^{\mu t} m_{\sigma Z}(t)=e^{\mu t} m_{Z}(\sigma t)=e^{\mu t} e^{\sigma^{2} t^{2} / 2}=e^{\mu t+\sigma^{2} t^{2} / 2}
$$

C.C. If $X \sim \operatorname{Bern}(p)$, then $m_{X}(t)=(1-p)+e^{t} p$. [This fact can be cited from the course/book or re-derived quickly.] Then, because T can be regarded as the sum of n IID $\operatorname{Bern}(p)$ random variables, $m_{T}(t)=\left(m_{X}(t)\right)^{n}=\left((1-p)+e^{t} p\right)^{n}$.
C.D. We know that T arises as a sum of n IID random variables, $E(T)=n p$, and $\operatorname{Var}(T)=$ $n p(1-p)$. So the central limit theorem says that T is approximately distributed as Norm $(n p, n p(1-$ $p)$). And a random variable from that distribution has MGF

$$
e^{n p t+n p(1-p) t^{2} / 2}
$$

by problem C.B. [It is not obvious that the answer to problem C.C and the answer to problem C.D are approximately equal. The graphs of the two functions are shown below, for $p=0.8$ and $n=100$. Indeed, they are nearly identical near $t=0$.]

D. First,

$$
\begin{aligned}
F_{W}(w) & =P(W \leq w) \\
& =P(X Y \leq w) \\
& =P(Y \leq w / X) \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{w / x} f_{X, Y}(x, y) d y d x \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{w / x} f_{Y}(y) f_{X}(x) d y d x \\
& =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{w / x} f_{Y}(y) d y\right) f_{X}(x) d x
\end{aligned}
$$

(The third equation holds because $X>0$. The fifth equation holds because X and Y are
independent.) Now we differentiate:

$$
\begin{aligned}
f_{W}(w) & =\frac{d}{d w} F_{W}(w) \\
& =\frac{d}{d w} \int_{-\infty}^{\infty}\left(\int_{-\infty}^{w / x} f_{Y}(y) d y\right) f_{X}(x) d x \\
& =\int_{-\infty}^{\infty} \frac{d}{d w}\left(\int_{-\infty}^{w / x} f_{Y}(y) d y\right) f_{X}(x) d x \\
& =\int_{-\infty}^{\infty} f_{Y}(w / x) x^{-1} f_{X}(x) d x
\end{aligned}
$$

(The final equation holds because of the fundamental theorem of calculus and the chain rule.)
E.A. FALSE. [The density f_{X} is defined on the whole real number line, and $f_{X}(-1)=0$.]
E.B. FALSE. [It should be $P(A \mid B)=P(A)$.]
E.C. FALSE. [It should be $\operatorname{Pois}(\lambda t)$. A "number of arrivals" should be a discrete random variable.]
E.D. TRUE. [They are both uniformly distributed on $\{1,2,3,4,5,6\}$.]
E.E. FALSE. $\left[X^{2}\right.$ is uniformly distributed on $\{1,4,9,16,25,36\}$, while $X Y$ is uniformly distributed on $\{6,10,12\}$.]
F.A. Let A, B, C be the events that the air bag was made by Acme, Bagatronic, Carface, respectively. Let D be the event that the air bag is defective. Then

$$
\begin{aligned}
P(D) & =P(D \mid A) P(A)+P(D \mid B) P(B)+P(D \mid C) P(C) \\
& =0.006 \cdot 0.50+0.002 \cdot 0.35+0.007 \cdot 0.15
\end{aligned}
$$

[This number is about $0.00475=0.475 \%$.]
F.B. Let A, B, C be the events that the air bags were made by Acme, Bagatronic, Carface, respectively. Let N be the event that none are defective. Then

$$
P(N)=P(N \mid A) P(A)+P(N \mid B) P(B)+P(N \mid C) P(C) .
$$

Now assume that Acme air bags are independent of each other, in whether they are defective. [This assumption would be bad if, for example, your air bags came from a single batch and that batch had a systemic problem. But there is no way to complete the problem without such an assumption. The presence of such an assumption is indicative of the student's understanding.]

Then $P(N \mid A)=(1-0.006)^{6}$. Similarly, for the other manufacturers we assume independence and deduce that $P(N \mid B)=(1-0.002)^{6}$ and $P(N \mid C)=(1-0.007)^{6}$. Thus

$$
P(N)=(1-0.006)^{6} \cdot 0.50+(1-0.002)^{6} \cdot 0.35+(1-0.007)^{6} \cdot 0.15 .
$$

[This number is about $0.971898 \approx 97 \%$.]
F.C. Establish the same notation A, B, C, D as in problem F.A. Then

$$
P(A \mid D)=\frac{P(D \mid A) P(A)}{P(D)}
$$

where $P(D)$ is exactly as in problem F.A. Thus we obtain

$$
P(A \mid D)=\frac{0.006 \cdot 0.50}{0.006 \cdot 0.50+0.002 \cdot 0.35+0.007 \cdot 0.15} .
$$

[This number is about $0.631579 \approx 63 \%$.]
G. The customer's life span is $X \sim \operatorname{Geom}(p)$, where "success" is dying in a given year and "failure" is not dying. The expected total payment is

$$
E(100 X)=100 E(X)=100(1-p) / p
$$

