A.A. For each parameter, our Metropolis-Hastings algorithm proposes a new value by drawing from a normal distribution centered on the current value. Suppose that we're simulating σ , and the current value σ_i is close to 0. Then there is a chance that the proposed σ' will be zero or negative — a nonsensical result. The same danger applies to σ^2 . But log σ can safely take on any real value, so it is not subject to this problem.

A.B. We do our usual transformation process. First,

$$F_L(\ell) = P(L \le \ell) = P(\log \Sigma \le \ell) = P(\Sigma \le e^{\ell}) = F_{\Sigma}(e^{\ell}).$$

Then differentiation yields

$$f_L(\ell) = \frac{d}{d\ell} F_{\Sigma}(e^{\ell}) = f_{\Sigma}(e^{\ell})e^{\ell} = e^{-\ell}e^{\ell} = 1.$$

B.A. The random variable Y is supported on $(0, \infty)$, where it has density

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx = \int_0^y e^{-y} \, dx = y e^{-y}.$$

B.B. First, the conditional density is

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = \frac{e^{-y}}{ye^{-y}} = y^{-1}.$$

The conditional expectation is then

$$E(X|Y=y) = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) \, dx = \int_{0}^{y} x y^{-1} \, dx = \left[\frac{1}{2}x^{2}y^{-1}\right]_{x=0}^{x=y} = y/2.$$

[Here's some intuition. The conditional density says that X is uniform on [0, y], which makes sense, because the joint density doesn't depend on x at all. Then, because X is uniform on [0, y], its average value should be y/2.]

B.C. Because E(X|Y = y) = y/2, we immediately conclude that E(X|Y) = Y/2.

C.A. Using some algebra and linearity of expectation, we derive

$$m_Y(t) = E(e^{tY}) = E(e^{tX+tc}) = E(e^{ct}e^{tX}) = e^{ct}E(e^{tX}) = e^{ct}m_X(t).$$

C.B. Let $Z \sim \text{Norm}(0, 1)$, so $m_Z(t) = e^{t^2/2}$. Then, by problem C.A,

$$m_W(t) = m_{\mu+\sigma Z}(t) = e^{\mu t} m_{\sigma Z}(t) = e^{\mu t} m_Z(\sigma t) = e^{\mu t} e^{\sigma^2 t^2/2} = e^{\mu t + \sigma^2 t^2/2}$$

C.C. If $X \sim \text{Bern}(p)$, then $m_X(t) = (1-p) + e^t p$. [This fact can be cited from the course/book or re-derived quickly.] Then, because T can be regarded as the sum of n IID Bern(p) random variables, $m_T(t) = (m_X(t))^n = ((1-p) + e^t p)^n$. **C.D.** We know that T arises as a sum of n IID random variables, E(T) = np, and Var(T) = np(1-p). So the central limit theorem says that T is approximately distributed as Norm(np, np(1-p)). And a random variable from that distribution has MGF

$$e^{npt+np(1-p)t^2/2},$$

by problem C.B. [It is not obvious that the answer to problem C.C and the answer to problem C.D are approximately equal. The graphs of the two functions are shown below, for p = 0.8 and n = 100. Indeed, they are nearly identical near t = 0.]

D. First,

$$F_W(w) = P(W \le w)$$

= $P(XY \le w)$
= $P(Y \le w/X)$
= $\int_{-\infty}^{\infty} \int_{-\infty}^{w/x} f_{X,Y}(x, y) \, dy \, dx$
= $\int_{-\infty}^{\infty} \int_{-\infty}^{w/x} f_Y(y) f_X(x) \, dy \, dx$
= $\int_{-\infty}^{\infty} \left(\int_{-\infty}^{w/x} f_Y(y) \, dy \right) f_X(x) \, dx.$

(The third equation holds because X > 0. The fifth equation holds because X and Y are

independent.) Now we differentiate:

$$f_W(w) = \frac{d}{dw} F_W(w)$$

= $\frac{d}{dw} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{w/x} f_Y(y) \, dy \right) f_X(x) \, dx$
= $\int_{-\infty}^{\infty} \frac{d}{dw} \left(\int_{-\infty}^{w/x} f_Y(y) \, dy \right) f_X(x) \, dx$
= $\int_{-\infty}^{\infty} f_Y(w/x) x^{-1} f_X(x) \, dx.$

(The final equation holds because of the fundamental theorem of calculus and the chain rule.)

E.A. FALSE. [The density f_X is defined on the whole real number line, and $f_X(-1) = 0$.]

E.B. FALSE. [It should be P(A|B) = P(A).]

E.C. FALSE. [It should be $Pois(\lambda t)$. A "number of arrivals" should be a discrete random variable.]

E.D. TRUE. [They are both uniformly distributed on $\{1, 2, 3, 4, 5, 6\}$.]

E.E. FALSE. $[X^2 \text{ is uniformly distributed on } \{1, 4, 9, 16, 25, 36\}$, while XY is uniformly distributed on $\{6, 10, 12\}$.]

F.A. Let A, B, C be the events that the air bag was made by Acme, Bagatronic, Carface, respectively. Let D be the event that the air bag is defective. Then

$$P(D) = P(D|A)P(A) + P(D|B)P(B) + P(D|C)P(C)$$

= 0.006 \cdot 0.50 + 0.002 \cdot 0.35 + 0.007 \cdot 0.15.

[This number is about 0.00475 = 0.475%.]

F.B. Let A, B, C be the events that the air bags were made by Acme, Bagatronic, Carface, respectively. Let N be the event that none are defective. Then

$$P(N) = P(N|A)P(A) + P(N|B)P(B) + P(N|C)P(C).$$

Now assume that Acme air bags are independent of each other, in whether they are defective. [This assumption would be bad if, for example, your air bags came from a single batch and that batch had a systemic problem. But there is no way to complete the problem without such an assumption. The presence of such an assumption is indicative of the student's understanding.] Then $P(N|A) = (1 - 0.006)^6$. Similarly, for the other manufacturers we assume independence and deduce that $P(N|B) = (1 - 0.002)^6$ and $P(N|C) = (1 - 0.007)^6$. Thus

$$P(N) = (1 - 0.006)^6 \cdot 0.50 + (1 - 0.002)^6 \cdot 0.35 + (1 - 0.007)^6 \cdot 0.15.$$

[This number is about $0.971898 \approx 97\%$.]

F.C. Establish the same notation A, B, C, D as in problem F.A. Then

$$P(A|D) = \frac{P(D|A)P(A)}{P(D)},$$

where P(D) is exactly as in problem F.A. Thus we obtain

$$P(A|D) = \frac{0.006 \cdot 0.50}{0.006 \cdot 0.50 + 0.002 \cdot 0.35 + 0.007 \cdot 0.15}$$

[This number is about $0.631579 \approx 63\%$.]

G. The customer's life span is $X \sim \text{Geom}(p)$, where "success" is dying in a given year and "failure" is not dying. The expected total payment is

$$E(100X) = 100E(X) = 100(1-p)/p.$$