
Exam C Math 265, Fall 2019, Carleton College

A. [This problem is not treatable by acceptance-rejection sampling, because the support of Y

is unbounded.] The CDF of Y is

FY (y) =

∫
ye−y

2/2 dy = −e−y2/2 + C.

Because the CDF must limit to 1 as y → ∞, we conclude that C = 1 and FY (y) = 1 − e−y2/2.
Setting this expression equal to x and solving for y, we compute

x = 1− e−y2/2

⇒ e−y
2/2 = 1− x

⇒ −y2/2 = log(1− x)

⇒ y2 = −2 log(1− x)

⇒ y =
√
−2 log(1− x).

Thus F−1Y (x) =
√
−2 log(1− x) for 0 < x < 1. The inverse transform algorithm for generating

a random value y of Y is:

1. Choose a number x uniformly randomly on [0, 1].

2. Compute y =
√
−2 log(1− x).

B. For starters,

FT (t) = P (T ≤ t) = P (Y X ≤ t).

The probability on the right equals the integral of the joint density fX,Y (x, y) over a certain

region of the x-y-plane. The region is bounded by the line x = 0, the line y = 0, and the curve

y = t1/x. [A sketch is helpful.] The integral is∫ ∞
0

∫ t1/x

0
fX,Y (x, y) dy dx.

Meanwhile, the joint density splits as fX,Y (x, y) = fX(x)fY (y) because X and Y are indepen-

dent. Therefore the integral is∫ ∞
0

∫ t1/x

0
fX(x)fY (y) dy dx =

∫ ∞
0

fX(x)FY

(
t1/x

)
dx.
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Finally,

fT (t) =
d

dt
FT (t)

=
d

dt

∫ ∞
0

fX(x)FY

(
t1/x

)
dx

=

∫ ∞
0

fX(x)
d

dt
FY

(
t1/x

)
dx

=

∫ ∞
0

fX(x)fY

(
t1/x

) d

dt

(
t1/x

)
dx

=

∫ ∞
0

fX(x)fY

(
t1/x

) 1

x
t1/x−1 dx.

[We do not know the support of T , although we know that it is contained in (0,∞). Also,

computing the integral in the dx dy order is more difficult. The cases t > 1, = 1, and t < 1

should be treated separately, and the integral for t > 1 should be written as a sum of two

integrals. In the end, I get

fT (t) =

∫ ∞
0

fY (y)fX

(
log t

log y

)
· 1

t log y
dy

for t > 1 and

fT (t) =

∫ 1

0
fY (y)fX

(
log t

log y

)
· −1

t log y
dy

for t < 1. The dy dx treatment suggests that these two expressions should agree as t→ 1. That

is not obvious.]

C.A. We compute

mX(t) = E
(
etX
)

=
∞∑
k=0

etkP (X = k)

=
∞∑
k=0

etk(1− p)kp

= p
∞∑
k=0

(
et(1− p)

)k
=

p

1− et(1− p)

for t sufficiently close to 0.

C.B. Recall that Y can be regarded as the sum of r independent Geom(p) random variables.

Therefore

mY (t) = (mX(t))r =

(
p

1− et(1− p)

)r

.
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C.C. Because Y is a sum of r IID random variables (with finite mean and variance), the central

limit theorem says that Y is approximately normal as r →∞. But et
2/2 is the MGF of a standard

normal random variable. So to make mZ(t) → et
2/2 we should let Z be the standardization of

Y . More explicitly, we know that E(Y ) = r(1− p)/p and V (Y ) = r(1− p)/p2. So

Z =
Y − E(Y )

SD(Y )
=
Y − r(1− p)/p√
r(1− p)/p2

.

D.A. [This problem is Theorem 9.3.2, which was in the assigned reading but not discussed in

class. In my opinion, this problem is the most difficult one on the exam.] Consider

E(Y |X = x) · h(x),

which is a function of x. Because x and h(x) are not random variables (but rather fixed values

of X and h(X), respectively), we can apply linearity of expectation:

E(Y |X = x) · h(x) = E(Y · h(x)|X = x).

When we turn this function of x into a function of X, we obtain

E(Y |X) · h(X) = E(Y · h(X)|X).

D.B. [This problem is Theorem 9.3.9, which was in the assigned reading but not discussed in

class.] By the definition of covariance,

Cov(Y − E(Y |X), h(X)) = E((Y − E(Y |X))h(X))− E(Y − E(Y |X)) · E(h(X)).

We now show that both terms on the right side of this equation are zero. By linearity of

expectation and the law of total expectation, the right term is

(E(Y )− E(E(Y |X))) · E(h(X)) = 0 · E(h(X)) = 0.

By simple algebra and Problem D.A, the left term is

E(Y h(X)− E(Y |X)h(X)) = E(Y h(X)− E(Y h(X)|X)).

Then, by linearity of expectation and the law of total expectation, the left term becomes

E(Y h(X))− E(E(Y h(X)|X)) = 0.

Therefore the covariance of Y − E(Y |X) and h(X) is zero, and they are uncorrelated.

E.A. How many visitors arrive today? The answer is X ∼ Pois(1,000), if we model arrivals as

a Poisson process over one day of time.
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E.B. How much time passes between consecutive arrivals? The answer is Y ∼ Expo(1,000), if

we model arrivals as a Poisson process over one day of time.

E.C. What is the average number of visitors over n days? It’s Sn/n, where Sn = X1 + · · ·+Xn

and Xi ∼ Pois(1,000) is the number of visitors on the ith day. Then

E(Sn/n) =
1

n
nE(X) = λ

and

V (Sn/n) =
1

n2
nV (X) = λ/n

because the Xi are independent. By the central limit theorem, Sn/n is approximately distributed

as Norm(λ, λ/n).

E.D. What is the quantile of today’s visitor count, among the visitor counts of all days? It’s

U ∼ Unif(0, 1). [See Exam B Problem B.]

E.E. Bernoulli: How many current presidents of the USA are visiting my site today? The

answer is either 0 or 1, and it’s random, so it’s T ∼ Bern(p) for some p. To get an idea of

how p relates to λ = 1,000, assume that all m = 8,000,000,000 people in the world are equally

probable to visit my site today and that their visits are independent of each other. Then the

number of visitors to my site today is V ∼ Binom(m, p). Combining our two models, we expect

the number of visitors today to be

mp = E(V ) = E(X) = λ.

Thus

p = λ/m =
1

8,000,000
.

[Here’s another solution that would also earn full credit, inspired by the binomial-Poisson

relationship discussed in class: How many visitors do I receive in the next millisecond? It is

quite improbable that I receive more than one visitor in the next millisecond. Therefore the

question is answered approximately by T ∼ Bern(p) for some p. Now what is p? We’ll figure it

out from the expected number of visitors in the next millisecond. The Bernoulli treatment says

that it’s approximately E(T ) = p. A Poisson treatment says that it’s 1,000/(24 · 60 · 60 · 1,000).

So p ≈ 1/(24 · 60 · 60).]
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