
3× 3 Matrices CS 311, Winter 2019

This tutorial teaches you about 3×3 matrices. It begins with multiplication and application

to vectors. It also describes how 3 × 3 matrices represent rotations and translations of two-

dimensional space. It assumes that you have already studied our 2× 2 matrix tutorial.

1 Multiplication

Multiplication of 3×3 and 3×1 matrices is much like multiplication of 2×2 and 2×1 matrices.

If M and N are 3× 3 and ~v is 3× 1, then

M~v =


M00 M01 M02

M10 M11 M12

M20 M21 M22



v0

v1

v2

 =


M00v0 +M01v1 +M02v2

M10v0 +M11v1 +M12v2

M20v0 +M21v1 +M22v2


and

MN =


M00 M01 M02

M10 M11 M12

M20 M21 M22



N00 N01 N02

N10 N11 N12

N20 N21 N22



=


M00N00 +M01N10 +M02N20 M00N01 +M01N11 +M02N21 M00N02 +M01N12 +M02N22

M10N00 +M11N10 +M12N20 M10N01 +M11N11 +M12N21 M10N02 +M11N12 +M12N22

M20N00 +M21N10 +M22N20 M20N01 +M21N11 +M22N21 M20N02 +M21N12 +M22N22

 .
It is helpful to recognize that the jth column of MN is M times the jth column of N . Or maybe

you would prefer a more concise expression:

(MN)ij =

2∑
k=0

MikNkj = Mi0N0j +Mi1N1j +Mi2N2j .

Geometrically, M~v is the vector ~v after being transformed by the transformation M . Simi-

larly, MN is the composite transformation resulting from N followed in time by M .

Matrix multiplication is associative; for example, M(N~v) = (MN)~v. However, matrix mul-

tiplication is not commutative: MN 6= NM except in special cases. The 3× 3 identity matrix

I =


1 0 0

0 1 0

0 0 1


satisfies I~v = ~v and IM = M = MI for all M and ~v.

2 Determinant and inversion

The determinant of a 3× 3 matrix M is

detM = −M20M11M02 +M10M21M02 +M20M01M12

−M00M21M12 −M10M01M22 +M00M11M22.

1



3× 3 Matrices CS 311, Winter 2019

The inverse matrix M−1 exists if and only if detM 6= 0. The inverse satisfies MM−1 = I =

M−1M . To compute the inverse, first compute a matrix N by

N00 = −M12M21 +M11M22,

N10 = M12M20 −M10M22,

N20 = −M11M20 +M10M21,

N01 = M02M21 −M01M22,

N11 = −M02M20 +M00M22,

N21 = M01M20 −M00M21,

N02 = −M02M11 +M01M12,

N12 = M02M10 −M00M12,

N22 = −M01M10 +M00M11.

Then M = N/detM , meaning that (M−1)ij = Nij/ detM for all i, j.

3 Homogeneous coordinates

Suppose that I have a 2 × 1 point ~v. I want to transform it by a 2 × 2 matrix M and then

translate it by a 2× 1 vector ~t. So the final result will be

~t+M~v =

[
t0

t1

]
+

[
M00 M01

M10 M11

][
v0

v1

]
=

[
t0 +M00v0 +M01v1

t1 +M10v0 +M11v1

]
.

It is not possible to express the translation, let alone the composite transformation, as a 2 × 2

matrix. To work around this problem, we use a mathematical trick (that is not taught in most

introductory linear algebra courses).

We append a 1 to the end of any vector ~v, so that it becomes a 3× 1 matrix:

~v =


v0

v1

1

 .
Correspondingly, any 2× 2 matrix M gets a row and column of 0s and 1s like this:

M =


M00 M01 0

M10 M11 0

0 0 1

 .
We call these the homogeneous versions of ~v and M . If we multiply them, then we get the

2



3× 3 Matrices CS 311, Winter 2019

homogeneous version of M~v:
M00 M01 0

M10 M11 0

0 0 1



v0

v1

1

 =


M00v0 +M01v1

M10v0 +M11v1

1

 =


(M~v)0

(M~v)1

1

 .
So far, the homogeneous versions don’t seem to be hurting us much, but they don’t seem to be

helping us either. They start helping us when we realize that translation can be expressed in

this framework. Let T be the matrix

T =


1 0 t0

0 1 t1

0 0 1

 .
Then, for any ~v,

T~v =


1 0 t0

0 1 t1

0 0 1



v0

v1

1

 =


v0 + t0

v1 + t1

1


is the homogeneous version of ~v translated by ~t.

4 Rotation followed by translation

For computer graphics, the most important example is rotation followed by translation:

TM =


1 0 t0

0 1 t1

0 0 1




cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 =


cos θ − sin θ t0

sin θ cos θ t1

0 0 1

 .
Suppose that we want to rotate and translate a vector ~v, then rotate and translate it again

(by a different rotation and translation), then rotate and translate again, and so on. Suppose

that there are d rotations and d translations in all. Here are two strategies:

• Don’t use homogeneous coordinates. Just apply each of the rotations and translations to

~v in the ordinary way, using 2× 2 and 2× 1 matrices.

• Do use homogeneous coordinates. So each rotation and translation is a 3×3 matrix. Don’t

apply them to ~v immediately. First, multiply them together to get a single 3× 3 matrix.

Then multiply that matrix by ~v.

If we want to transform a single ~v, then which strategy is faster? If we want to transform many

vectors ~v (all by the same sequence of rotations and translations), then which strategy is faster?

3


