A. Differentiating $c^2 = \left| \vec{\gamma} - \vec{\delta} \right|^2$ produces

$$0 = (\vec{\gamma} - \vec{\delta})' \cdot (\vec{\gamma} - \vec{\delta}) + (\vec{\gamma} - \vec{\delta}) \cdot (\vec{\gamma} - \vec{\delta})' = 2(\vec{\gamma} - \vec{\delta}) \cdot (\vec{\gamma}' - \vec{\delta}'),$$

which implies that

$$\vec{\gamma}' \cdot (\vec{\gamma} - \vec{\delta}) = \vec{\delta}' \cdot (\vec{\gamma} - \vec{\delta}).$$

Let θ, ϕ be the two angles in question, so that the equation above becomes

$$\left|\vec{\gamma}'\right|c\cos\theta = \left|\vec{\delta}'\right|c\cos\phi.$$

Because $|\vec{\gamma}'| = |\vec{\delta}'| = 1$, we get $\cos \theta = \cos \phi$. Because θ and ϕ are in $[0, \pi]$, we conclude that $\theta = \phi$.

B.A. The curve $\vec{\delta}$ is closed because all derivatives of $\vec{\gamma}$ match at $\pm 2\pi$. There is no reason for it to be simple or unit-speed. [Draw examples.]

B.B. There is no reason for $\vec{\beta}$ to be simple, closed, or unit-speed. For example, if $\vec{\gamma}$ is entirely in the right half of the plane, then $\vec{\beta}$ will not close. For another example, imagine that $\vec{\beta}$ is the figure eight parametrized at unit speed. Then $\vec{\gamma}$ is a non-simple closed curve in \mathbb{S}^1 . Perturb $\vec{\gamma}$ slightly, so that it is a simple closed curve in \mathbb{R}^2 . Parametrize the perturbed $\vec{\gamma}$ by arc length. Then $\vec{\gamma}$ fits the assumptions of the problem, but $\vec{\beta}$ is still a figure eight and not simple. [Draw examples.]

B.C. Because $\vec{\gamma}$ is a simple, closed, unit-speed curve, Hopf's Umlaufsatz says that the rotation index of $\vec{\gamma}$, which equals the degree of $\vec{\delta}$ as a map into \mathbb{S}^1 , is ± 1 . On the other hand, the degree of $\vec{\epsilon}$ as a map into \mathbb{S}^1 is 2. By Lemma 2.4, there is some $t \in [-2\pi, 2\pi]$ such that $\vec{\delta}(t) = -\vec{\epsilon}(t)$. The result follows.

C.A. Because $\kappa > 0$ and $|\vec{v}| = 1$, the simplified Frenet equations

$$\vec{t}' = \kappa \vec{n},$$

$$\vec{n}' = -\kappa \vec{t} + \tau \vec{b},$$

$$\vec{b}' = -\tau \vec{n}$$

hold. Then, using the assumption that κ and τ are constant, we differentiate to obtain

$$\vec{t}'' = \kappa \vec{n}' = -\kappa^2 \vec{t} + \kappa \tau \vec{b}$$

and

$$\vec{t}^{\prime\prime\prime} = -\kappa^2 \vec{t}^\prime + \kappa \tau \vec{b}^\prime = -\kappa^3 \vec{n} - \kappa \tau^2 \vec{n} = -(\kappa^2 + \tau^2) \kappa \vec{n} = -c^2 \vec{t}^\prime,$$

where $c = \sqrt{\kappa^2 + \tau^2}$.

C.B. Applying the hint to each component of \vec{t}' , we have

$$\vec{t}' = \begin{bmatrix} a_1 \cos(ct) + b_1 \sin(ct) \\ a_2 \cos(ct) + b_2 \sin(ct) \\ a_3 \cos(ct) + b_3 \sin(ct) \end{bmatrix}$$

for some constants a_i, b_i . And then

$$\vec{t} = \begin{bmatrix} \frac{a_1}{c}\sin(ct) - \frac{b_1}{c}\cos(ct) + k_1 \\ \frac{a_2}{c}\sin(ct) - \frac{b_2}{c}\cos(ct) + k_2 \\ \frac{a_3}{c}\sin(ct) - \frac{b_3}{c}\cos(ct) + k_3 \end{bmatrix}$$

for some constants k_i . Finally,

$$\vec{\gamma} = \begin{bmatrix} -\frac{a_1}{c^2}\cos(ct) - \frac{b_1}{c^2}\sin(ct) + k_1t + \ell_1 \\ -\frac{a_2}{c^2}\cos(ct) - \frac{b_2}{c^2}\sin(ct) + k_2t + \ell_2 \\ -\frac{a_3}{c^2}\cos(ct) - \frac{b_3}{c^2}\sin(ct) + k_3t + \ell_3 \end{bmatrix}$$

for some constants ℓ_i . The requirement that $\vec{t} \cdot \vec{t} = 1$ places some restrictions on the values of the unknown constants, but those restrictions are quite complicated, so we do not pursue them.