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The Frenet equations capture deep knowledge of how curves in R3 behave. In particular,

they lead to the following result, which says approximately that curvature and torsion uniquely

determine a curve.

Fundamental Theorem of Curves in R3: Let I be an interval containing 0. Let ̃ : I !
(0,1) and ⌧̃ : I ! R be smooth. Let �̃(0) 2 R3 and let {t̃(0), ñ(0), b̃(0)} be a right-handed

orthonormal basis of R3. Then there exists an ✏ > 0 and a unique regular curve � : (�✏, ✏) ! Rn

such that

1. � is parametrized by arc length measured from �(0),

2. the initial conditions �(0) = �̃(0), t(0) = t̃(0), n(0) = ñ(0), b(0) = b̃(0) are satisfied, and

3. (s) = ̃(s) and ⌧(s) = ⌧̃(s) for all s 2 (�✏, ✏).

Proof: First, consider the first-order ordinary di↵erential equations

t̃
0

= ̃ñ,

ñ0 = �̃t̃+ ⌧̃ b̃,

b̃
0

= �⌧̃ ñ.

with respect to the independent variable s, subject to prescribed initial values t̃(0), ñ(0), b̃(0)

at s = 0. The theory of existence and uniqueness of solutions to ordinary di↵erential equations

(Appendix A.3) says that there exists a unique smooth solution {t̃(s), ñ(s), b̃(s)} on a small

interval (�✏, ✏).

Now consider the s-dependent symmetric matrix

P̃ =

2

664

t̃ · t̃ t̃ · ñ t̃ · b̃
ñ · t̃ ñ · ñ ñ · b̃
b̃ · t̃ b̃ · ñ b̃ · b̃

3

775 .

The derivative with respect to s is

P̃
0

=

2

664

t̃
0 · t̃+ t̃ · t̃0 t̃

0 · ñ+ t̃ · ñ0 t̃
0 · b̃+ t̃ · b̃0

ñ0 · t̃+ ñ · t̃0 ñ0 · ñ+ ñ · ñ0 ñ0 · b̃+ ñ · b̃0

b̃
0 · t̃+ b̃ · t̃0 b̃

0 · ñ+ b̃ · ñ0 b̃
0 · b̃+ b̃ · b̃0

3

775

=

2

664

2̃t̃ · ñ �̃t̃ · t̃+ ⌧̃ b̃ · t̃+ ̃ñ · ñ �⌧̃ ñ · t̃+ ̃ñ · b̃
�̃t̃ · t̃+ ⌧̃ b̃ · t̃+ ̃ñ · ñ �2̃t̃ · ñ+ 2⌧̃ b̃ · ñ �⌧̃ ñ · ñ+ ̃ñ · b̃

�⌧̃ ñ · t̃+ ̃ñ · b̃ �⌧̃ ñ · ñ+ ̃ñ · b̃ �2⌧̃ ñ · b̃

3

775

=

2

664

2̃P̃12 �̃P̃11 + ⌧̃ P̃13 + ̃P̃22 �⌧̃ P̃12 + ̃P̃13

�̃P̃11 + ⌧̃ P̃13 + ̃P̃22 �2̃P̃12 + 2⌧̃ P̃23 �̃P̃13 + ⌧̃ P̃33 � ⌧̃ P̃22

�⌧̃ P̃13 + ̃P̃23 �̃P̃13 + ⌧̃ P̃33 � ⌧̃ P̃22 �2⌧̃ P̃23

3

775 .
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With the symmetry conditions P̃12 = P̃21, P̃23 = P̃32, and P̃13 = P̃31, as well as the initial

conditions P̃(0) = I, the theory of ordinary di↵erential equations again says that there exists a

unique solution for P̃ on an interval (�✏, ✏) (possibly smaller than the last interval). But, if you

plug P̃ ⌘ I into this expression for P̃
0
, then you get P̃

0
= 0, which is consistent with P̃ = I.

Hence the unique solution is simply P̃ = I. That is, {t̃, ñ, b̃} is an orthonormal basis for all

s 2 (�✏, ✏). Let F̃ be the matrix with columns t̃, ñ, b̃. Because those vectors are orthonormal,

F̃ is orthogonal and det F̃ = ±1. The determinant is a continuous function of s with value 1 at

s = 0, so det F̃ = 1. That is, the orthonormal basis is right-handed.

Finally let �(s) = �(0) +
R s
0 t̃(u) du. By the fundamental theorem of calculus, � 0(s) = t̃(s),

which has norm 1 by the preceding paragraph. Hence � is arc-length-parametrized and regular,

and � 0 = v = t = t̃. From the Frenet equations,

n = t0 = t̃
0
= ̃ñ.

Because ̃ > 0, it follows that  = ̃ and n = ñ. Then

b = t⇥ n = t̃⇥ ñ = b̃

and

�⌧n = b0 = b̃
0
= �⌧̃ ñ = �⌧̃n,

which implies that ⌧ = ⌧̃ . So � solves the problem. Moreover, t̃ is unique, and � is uniquely

determined by �(0) and t̃, so � is the unique solution.
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