
Day 04 Homework CS 358, Spring 2020

A. What are the eigenvalues of X, Y , and Z? (Hint: First compute the trace and determinant.

Then compute the eigenvalues from them.)

B. Beyond mere practice with one-qbit gates, this exercise plays a crucial role in quantum circuits

that we study later in the course. Mermin proves this result in his book, but in a scattered and

complicated way that ties into a bunch of cool math. Because I’m not trying to teach you a

bunch of cool math, I favor the following simpler approach.

1. Let U be any diagonal one-qbit gate. Let (detU)1/2 be either of the two complex numbers

that square to detU . Prove, as explicitly as possible, that there exist diagonal one-qbit

gates V and W such that

U = (detU)1/2V XV ∗WXW ∗.

2. Repeat part 1 of this problem, but with both occurrences of the word “diagonal” removed.

(Hint: If you read the 2× 2 unitary matrix part of our Complex Linear Algebra tutorial,

you will find a fact that, in combination with part 1, greatly expedites this problem.)

C. This exercise develops a more refined picture of the set of one-qbit states, taking into account

global phase changes.

1. Let |ψ〉 ∈ C2 be any one-qbit state. Prove that there exist t ∈ [0, 2π), w ∈ [0, 2π), and

v ∈ [0, π] such that

|ψ〉 = eit

[
cos(v/2)

sin(v/2)eiw

]
. (1)

2. When v = 0, which popular state arises (up to global phase change)? When v = π, which

popular state arises?

3. Assume that v = 0 and v = π are the only cases where differing values of w and v produce

indistinguishable states. Explain — intuitively, not rigorously — why the set of physically

distinguishable one-qbit states forms a sphere. (Hint: Spherical coordinates. If you don’t

know them, then look them up.)

4. Consider the map |χ〉 7→ |χ0|2. Intuitively, this map sends a one-qbit state to its resulting

probability distribution over the classical states. (Notice that |χ1|2 is determined by |χ0|2

because they sum to 1.) Interpret this map geometrically, as a map from the sphere to

another set.

D. Implement the measurement function below. (My implementation is six lines of code.)

Submit your code in the same file as the exercises above — not a separate Python file. Include

a short demonstration that your code works.

1

Day 04 Homework CS 358, Spring 2020

import math

import random

import numpy

The classical one-qbit states.

ket0 = numpy.array([1 + 0j, 0 + 0j])

ket1 = numpy.array([0 + 0j, 1 + 0j])

Write this function. Its input is a one-qbit state. It returns either ket0 or ket1.

def measurement(state):

pass

For large m, this function should print a number close to 0.64. (Why?)

def measurementTest345(m):

psi = 0.6 * ket0 + 0.8 * ket1

def f():

if (measurement(psi) == ket0).all():

return 0

else:

return 1

acc = 0

for i in range(m):

acc += f()

return acc / m

2

