Day 14 Homework CS 358, Spring 2020

This is a Python programming assignment. You will edit your ongoing copy of qc.py and
submit it for grading. The grader will import gc and then run their own testing code against

it. Probably the grader will also inspect your code.

First we need to learn the repeated squaring algorithm. Suppose that I want to compute 5%7.

First I compute certain powers of 5 by squaring certain other powers of 5:

58 = 5,

52 = (51)? = 25,

51 = (5%)2 = 625,

55 = (5%? = 390625,

510 = (5%)2 = 152587890625.

I know that that’s enough, because meanwhile I'm expressing the exponent 27 as a sum of powers
of 2:

27=16+8+4+2+ 1.

So
527 = 516 .58 . 52 . 51 = 7450580596923828125.

I have performed a total of seven multiplications, compared to the 26 multiplications used by
the naive algorithm for computing 5%7. In general, computing k¢ requires O(¢) multiplications
in the naive algorithm and O(log ¢) multiplications in repeated squaring. Boom.

The same idea works for powers modulo m. Just replace every multiplication with multipli-
cation modulo m. That is, after every multiplication, divide the product by m and keep only
the remainder. Then you never have to hold any number larger than m?.

If you write the repeated squaring algorithm cleverly, then you can discover how many powers
of k you need while also computing those powers and incorporating them into the answer. If

you don’t want to figure this out on your own, then see Mermin’s Section 3.8.

A. Write a function according to the following specification. Your implementation should use

the repeated squaring technique to achieve high speed.

def powerMod(k, 1, m):
’?’Given non-negative integer k, non-negative integer 1, and positive

integer m. Computes k”1 mod m. Returns an integer in {0, ..., m - 1}.’”’

B. Write the following function.



Day 14 Homework CS 358, Spring 2020

def fourier(n):

’?’Returns the n-gbit quantum Fourier transform gate T.’’’

C. Write the following function to implement the quantum core subroutine for Shor’s algorithm
as described in our lectures. The output is the output of the last partial measurement — the

one on the input register.

def shor(m, f):
’?’Assumes n >= 1. Given an (n + n)-qbit gate f representing a function
f: {0, 1}'n -> {0, 1} "n of the form £f(1) = k"1 % m, returns a list of
classical one-gbit states (ketO or ketl) corresponding to an n-bit string

that satisfies certain mathematical properties.’’’

D. Write a function shorTest(n, m). It takes as input the integers n and m as specified in
our lectures. It chooses a random k that is coprime to m (math.gcd might help), builds the
function f that computes powers of k modulo m (using repeated squaring — powerMod might
help), converts it to a gate F', and runs Shor’s quantum core subroutine. For now, just print out

the results. (In future lectures we’ll see how to use the results, and we’ll write a better test.)



