A. Let $m=1022117$. Assume that m is a product of two distinct primes. Suppose that, using Shor's algorithm, you compute the following periods in $(\mathbb{Z} / m \mathbb{Z})^{*}$:

1. The period of $k=966244$ is $p=7084$.
2. The period of $k=713912$ is $p=7728$.
3. The period of $k=788451$ is $p=255024$.

Is this enough information to factor m ? Execute the factoring algorithm.
B. Suppose that a and b are distinct large primes and $m=a b$. Given m, you wish to discover a and b. Rephrase this integer factoring problem as an example of Grover's problem (with $\sum_{\alpha} f(\alpha)=1$), carefully specifying n and f. What is the running time of this Grover-based factoring algorithm, as a function of the number of bits needed to represent m ?
C. For any unit $|\rho\rangle \in \mathbb{C}^{2^{n}}$, let $R=2|\rho\rangle\langle\rho|-I$. Verify that R acts on $\mathbb{C}^{2^{n}}$ as reflection across $|\rho\rangle$, by completing the following subproblems.

1. Prove that $R|\rho\rangle=|\rho\rangle$.
2. Prove that if $|\psi\rangle$ is perpendicular to $|\rho\rangle$, then $R|\psi\rangle=-|\psi\rangle$.
3. Prove that $R^{2}=I$.
4. Also prove that R is unitary.
