A. Let m = 1022117. Assume that m is a product of two distinct primes. Suppose that, using Shor's algorithm, you compute the following periods in $(\mathbb{Z}/m\mathbb{Z})^*$:

- 1. The period of k = 966244 is p = 7084.
- 2. The period of k = 713912 is p = 7728.
- 3. The period of k = 788451 is p = 255024.

Is this enough information to factor m? Execute the factoring algorithm.

B. Suppose that a and b are distinct large primes and m = ab. Given m, you wish to discover a and b. Rephrase this integer factoring problem as an example of Grover's problem (with $\sum_{\alpha} f(\alpha) = 1$), carefully specifying n and f. What is the running time of this Grover-based factoring algorithm, as a function of the number of bits needed to represent m?

C. For any unit $|\rho\rangle \in \mathbb{C}^{2^n}$, let $R = 2 |\rho\rangle \langle \rho| - I$. Verify that R acts on \mathbb{C}^{2^n} as reflection across $|\rho\rangle$, by completing the following subproblems.

- 1. Prove that $R |\rho\rangle = |\rho\rangle$.
- 2. Prove that if $|\psi\rangle$ is perpendicular to $|\rho\rangle$, then $R |\psi\rangle = -|\psi\rangle$.
- 3. Prove that $R^2 = I$.
- 4. Also prove that R is unitary.