A. The usual matrix multiplication algorithm uses $\mathcal{O}(mpq)$ arithmetic operations to multiply an $m \times p$ matrix and a $p \times q$ matrix. (Asymptotically faster algorithms are known to exist, but let's ignore them.)

This exercise is about the known k = 1 version of Grover's problem. In a classical simulation, such as grover in qc.py, most of the work lies in applying $((R \otimes I) \cdot F)^{\ell}$ to a certain state $|\psi\rangle$. It's natural to wonder: By tweaking the order of matrix multiplication, can we make our simulation faster or slower? Compare the asymptotic running times (in terms of n) of the following three strategies.

- 1. Starting with the state $|\psi\rangle$, apply F to get a new state $F \cdot |\psi\rangle$, then apply $R \otimes I$ to get a new state $(R \otimes I) \cdot F \cdot |\psi\rangle$, and then apply F, and then apply $R \otimes I$, and so on.
- 2. First compute $(R \otimes I) \cdot F$. Then compute $((R \otimes I) \cdot F)^{\ell}$ by repeated squaring. Then apply that single matrix to $|\psi\rangle$.
- 3. First compute $(R \otimes I) \cdot F$. Then compute $((R \otimes I) \cdot F)^{\ell}$ by the naive algorithm (not repeated squaring). Then apply that single matrix to $|\psi\rangle$.

B. This exercise is about the known $k \ge 1$ version of Grover's problem. Consider how the performance of Grover's algorithm is affected, as k changes from 1 to 2 to 3 and so on. That is, imagine that k is increasing but remains small.

- 1. As k increases, does Grover's algorithm perform better or worse? Discuss qualitatively.
- 2. To make it more quantitative, let's focus on one quantity: the expected number of invocations of F needed to obtain a single correct $|\delta^j\rangle$. As k increases, does this quantity increase or decrease?