Recall that

 $CLIQUE = \{ \langle G, k \rangle : G \text{ is an undirected graph}, k \ge 1, \text{ and } G \text{ contains a } k\text{-clique} \}.$

Also, for any $k \ge 1$, let

 $CLIQUE_k = \{\langle G \rangle : G \text{ is an undirected graph that contains a } k-clique\}.$

In class, we will soon learn that CLIQUE is NP-complete. Without going into details, this fact implies that if $CLIQUE \in P$, then P = NP. The popular belief is that $P \neq NP$ and hence $CLIQUE \notin P$.

A. Show that $CLIQUE_k \in P$ for all k. (For the sake of Problem B, it might help if you try to pin down your running time fairly precisely. By the way, the k = 3 case is Problem 7.9 in our textbook.)

B. Explain how it's possible that $CLIQUE_k \in P$ for all k, but $CLIQUE \notin P$. In other words, explain why someone might think that $(\forall k \ CLIQUE_k \in P) \Rightarrow CLIQUE \in P$, and why that argument can't be completed.