Recall that

CLIQUE $=\{\langle G, k\rangle: G$ is an undirected graph, $k \geq 1$, and G contains a k-clique $\}$.
Also, for any $k \geq 1$, let

$$
C L I Q U E_{k}=\{\langle G\rangle: G \text { is an undirected graph that contains a } k \text {-clique }\} .
$$

In class, we will soon learn that CLIQUE is $N P$-complete. Without going into details, this fact implies that if CLIQUE $\in P$, then $P=N P$. The popular belief is that $P \neq N P$ and hence CLIQUE $\notin P$.
A. Show that CLIQUE $_{k} \in P$ for all k. (For the sake of Problem B, it might help if you try to pin down your running time fairly precisely. By the way, the $k=3$ case is Problem 7.9 in our textbook.)
B. Explain how it's possible that $C L I Q U E_{k} \in P$ for all k, but $C L I Q U E \notin P$. In other words, explain why someone might think that $\left(\forall k \operatorname{CLIQUE}_{k} \in P\right) \Rightarrow C L I Q U E \in P$, and why that argument can't be completed.

