
Exam C Solutions CS 254, Fall 2018

A. [We discussed this issue in class, right after defining PSPACE-hardness.] Notice that P ⊆
NP and P ⊆ PSPACE. We always define our reductions to come from a smaller complexity

class. In defining NP -hardness, we used reductions in P . In defining PSPACE-hardness, we

again use reductions in P .

If we don’t require our reductions to come from a smaller complexity class, then we produce

trivial and uninteresting concepts. For example, say that a language B is “PSPACE-firm” if

every language A ∈ PSPACE can be polynomial-space mapping reduced to B. Then every

language in PSPACE is PSPACE-firm. [Why?] So it’s not a definition worth pursuing.

B. [We discussed this non-proof in class, just before doing the proof.] How big would the tableau

have to be? Its width would be s(n), which is fine. Its height would be t(n), meaning the time

used by the NTM on inputs of size n. The problem is that t(n) can be exponential in s(n)

(because of our bound on the number of configurations). So the size of the tableau and the

resulting formula might be exponential in s(n).

C. Assume for the sake of contradiction that A is decidable. Let D be a decider for A. We will

describe a decider E for EMPTYTM . On input 〈M〉, E does these steps:

1. Build a Turing machine N whose start state is its reject state. That is, N rejects all inputs

immediately.

2. Run D on 〈M,N〉 and output the same result as D does.

This E is a decider because its first step is extremely simple and its second step is to run a

decider. Notice that E accepts 〈M〉 if and only if L(M) = L(N). But L(N) = ∅, so E accepts

〈M〉 if and only if L(M) = ∅. Thus E decides EMPTYTM . But EMPTYTM is undecidable by

Rice’s theorem. From this contradiction we conclude that A cannot be decidable either.

D. [I won’t draw the Venn diagram, but I will write out the crucial containments symbolically.]

REGULAR ⊆ CONTEXTFREE, because every regular language is context-free.

CONTEXTFREE ⊆ P, as we proved in class using dynamic programming.

P ⊆ NP, because every TM is trivially an NTM.

NP ⊆ NPSPACE, because time used always upper-bounds space used.

NPSPACE = PSPACE as a consequence of Savitch’s theorem.

PSPACE ⊆ EXPTIME, as we proved in class by bounding the number of configurations.

EXPTIME ⊆ EXPSPACE, because time used always upper-bounds space used.

EXPSPACE ⊆ DECIDABLE; any language decidable in exponential space is decidable.

DECIDABLE is the intersection of RECOGNIZABLE and CORECOGNIZABLE, so it is a

subset of both of those. There is no containment relationship between RECOGNIZABLE and

CORECOGNIZABLE.

1

Exam C Solutions CS 254, Fall 2018

E. Let A be a regular expression matching all single characters other than carriage returns.

Let R be a regular expression matching the carriage return character. Let D be a regular

expression matching all digits. Let C be a regular expression matching all single characters

other than carriage returns and commas. Let L be a regular expression matching all single

letter characters.

The first line is matched by A∗.

The second line is matched by (DD∗A∗) ∪ (PO BoxDD∗).

The third line is matched by C∗,LLDDDDD(ε ∪ -DDDD).

Therefore the regular expression for matching whole addresses is

A∗R(DD∗A∗) ∪ (PO BoxDD∗)RC∗,LLDDDDD(ε ∪ -DDDD).

F. I will prove that A is not context-free. Then it follows that A is not regular either.

Assume for the sake of contradiction that A is context-free. Let p be a pumping length for

A. Let s = apbpcp. Then s decomposes into s = uvxyz in the usual way. Because |vxy| ≤ p, we

know that vxy is a substring of either apbp or bpcp.

If vxy is a substring of apbp, then uv0xy0z = uxz is of the form akb`cp. Because vy is

nonempty, we know that k < p or ` < p (or both). Thus uv0xy0z 6∈ A.

Similarly, if vxy is a substring of bpcp, then uv0xy0z is of the form apbkc`, where k < p or

` < p. Thus uv0xy0z 6∈ A.

In both cases we have pumped the string w out of A. This result contradicts the pumping

lemma. We conclude that A cannot be context-free.

2

