
Exam C Solutions CS 254, Winter 2020

A. Suppose for the sake of contradiction that H decides ACCTM . We describe a decider D for

HALTTM . On input 〈M,w〉, D performs this algorithm:

1. Run H on 〈M,w〉. If H accepts, then accept. Otherwise, continue.

2. Build a Turing machine N that is identical to M except that the accept and reject states

are switched.

3. Run H on 〈N,w〉. If H accepts, then accept. Otherwise, reject.

Because all three steps of D halt, D is a decider. Further,

D accepts 〈M,w〉 ⇔ H accepts 〈M,w〉 or H accepts 〈N,w〉

⇔ M accepts w or N accepts w

⇔ M accepts w or M rejects w

⇔ M halts on w

⇔ 〈M,w〉 ∈ HALTTM .

Thus D is a decider for HALTTM . But HALTTM is undecidable. This contradiction implies

that ACCTM is also undecidable.

[Can you optimize D down to a single invocation of H? Many students did in their solutions.]

B.A. Yes. Consider a nondeterministic Turing machine with time complexity t(n) and space

complexity s(n). Recall that

s(n) = max
w:|w|=n

(
max

branches on w
(space usage of that branch)

)
.

But, on each branch, the space usage is at most one more than the time usage. Therefore

s(n) ≤ max
w:|w|=n

(
max

branches on w
(1 + time usage of that branch)

)
= 1 + max

w:|w|=n

(
max

branches on w
(time usage of that branch)

)
= 1 + t(n).

Thus s(n) is O(t(n)).

B.B. On two occasions we have described a four-tape deterministic Turing machine M for

simulating N . The first tape stores the input and hence uses space n = O(tN (n)) by the

assumption that tN (n) ≥ n. The second tape simulates N ’s tape and hence uses space sN (n) =

O(tN (n)) by the space-time lemma. The third tape stores the branching pattern of N and hence

uses space O(tN (n)). The fourth tape uses space O(1). Hence sM (n) is O(tN (n)). Converting

1

Exam C Solutions CS 254, Winter 2020

the multi-tape M to a single-tape D increases the space usage by a constant multiple. Hence

sD(n) = O(sM (n)) = O(tN (n)).

[Here’s an alternative idea. First, sD(n) is O(tD(n)) by the space-time lemma. Second,

tD(n) is 2O(tN (n)). Third, 2O(sN (n)) is 2O(tN (n)) by the space-time lemma. Is there any way to

combine these facts to get a bound?]

C.B. This was a homework problem. The language is decidable and hence recognizable and

co-recognizable.

C.C. Suppose for the sake of contradiction that the language is decidable by a decider H. Then

one can build a decider D for the language {〈M〉 : M accepts ε}. (Briefly, D runs H on 〈M, ε〉. If

H rejects, then D rejects. If H accepts, then D runs M on ε and outputs whatever M outputs.)

But the latter language is undecidable by Rice’s theorem. This contradiction shows that the

language in question is undecidable. It is recognizable, because a recognizer could simply run

M on ε and accept whenever M halted. Because the language is undecidable and recognizable,

it cannot be co-recognizable.

C.D. For brevity, call the language A. I claim that A is decidable and hence recognizable and

co-recognizable. To support this claim, we design a decider D that, on input 〈M, c〉, does the

following computation.

1. For each input w such that |w| ≤ c+ 1:

(a) Simulate M on w for up to c steps.

(b) If M does not halt on w in c or fewer steps, then reject.

2. Accept.

This D is a decider because its loop fires finitely many times, doing finitely much work per

firing. Now fix an 〈M, c〉. For brevity, call a string w short if |w| ≤ c + 1. Suppose that D

rejects 〈M, c〉. Then it must have found a w on which M does not halt in c or fewer steps, so

〈M, c〉 6∈ A. Conversely, suppose that D accepts 〈M, c〉. Then M halts on all short w in c or

fewer steps. Let x be any input to M such that |x| > c + 1, and let w be the string consisting

of the first c+ 1 characters in x. Then M ’s behavior on input x is identical to M ’s behavior on

input w, because M halts before it can reach the latter characters in x. So, because M halts on

all short w in c or fewer steps, it halts on all inputs x in c or fewer steps. So 〈M, c〉 ∈ A. Thus

D decides A.

C.E. The language is undecidable by Rice’s theorem. I don’t know more than that. So the

recognizable and co-recognizable adjectives were removed from grading.

2

Exam C Solutions CS 254, Winter 2020

C.F. Any M can be modified into an N that has a disconnected state, simply by adding a state

that loops on itself. Therefore the language consists of all Turing machine encodings 〈M〉. In

the jargon of Rice’s theorem, it is a trivial property of recognizable languages. It is decidable

and hence recognizable and co-recognizable.

C.G. The language is undecidable by Rice’s theorem. It is recognizable, because a recognizer

could simply run M on 〈M〉 and output whatever M outputted. Because the language is

undecidable and recognizable, it cannot be co-recognizable.

C.H. The language is decidable and hence recognizable and co-recognizable. All of our algo-

rithms for processing such pairs — for example, the recognizer for ACCTM — implicitly perform

this check at the start of their computation.

3

