Here's one thing that we didn't discuss in class today, that is relevant to the last few problems below: It is common to talk about points using the same notation as vectors. For example, in \mathbb{R}^2 consider the vector $\vec{v} = \langle 3, -2 \rangle$. If you place this vector at the origin, then it points to the point (3, -2). When we talk about the *point* \vec{v} , we mean the point (3, -2). More generally, the point $\vec{p} = \langle p_1, p_2 \rangle$ means the point (p_1, p_2) .

Also, when you are asked to prove something, *prove* means "give an explanation that would convince a skeptical classmate".

- 1. Section 12.2 # 19.
- 2. Section 12.2 #23.
- 3. Section 12.2 # 30.
- 4. Section 12.2 #45. [For some students, this problem foreshadows the first week of Math 232. But you don't need to have studied linear algebra, to solve it.]
- 5. Let \vec{p} and \vec{q} be any two points in \mathbb{R}^3 . Let $\vec{m} = \frac{1}{2}(\vec{p} + \vec{q})$. Using basic properties of vector addition and scalar multiplication, prove that \vec{m} is the midpoint of the line segment between \vec{p} and \vec{q} . [Hint: Compare the vector $\vec{p} \vec{m}$ to the vector $\vec{q} \vec{m}$. And draw a picture!]
- 6. Section 12.2 #51.
- 7. Section 12.2 # 7.
- 8. In any given year, a company's *revenue* is its income that is, the amount of money that it pulls in. (The profit is the revenue minus the cost.) Let's denote the revenue as r. Notice that r can change from year to year. Now consider an industry made up of two companies with revenues r_1 and r_2 respectively. The overall state of the system can be represented as a vector $\vec{r} = \langle r_1, r_2 \rangle$ pointing to the point (r_1, r_2) in the first quadrant of \mathbb{R}^2 . Here are four questions.
 - (a) If the two companies are competing for the same fixed pool of consumers, then how might \vec{r} vary over time? Draw a picture and briefly explain.
 - (b) On the other hand, if the two companies are in cooperation for example, one supplies the other with materials then how might \vec{r} vary over time?
 - (c) Re-do those first two questions for the case where there are three companies.

(d) What if there are n companies, where n = 100, say?

If you feel that you need more practice with this foundational vector material, then do more problems from the book, or come talk to me. :)