Here's one thing that we didn't discuss in class today, that is relevant to the last few problems below: It is common to talk about points using the same notation as vectors. For example, in \mathbb{R}^{2} consider the vector $\vec{v}=\langle 3,-2\rangle$. If you place this vector at the origin, then it points to the point $(3,-2)$. When we talk about the point \vec{v}, we mean the point $(3,-2)$. More generally, the point $\vec{p}=\left\langle p_{1}, p_{2}\right\rangle$ means the point $\left(p_{1}, p_{2}\right)$.

Also, when you are asked to prove something, prove means "give an explanation that would convince a skeptical classmate".

1. Section $12.2 \# 19$.
2. Section $12.2 \# 23$.
3. Section $12.2 \# 30$.
4. Section $12.2 \# 45$. [For some students, this problem foreshadows the first week of Math 232. But you don't need to have studied linear algebra, to solve it.]
5. Let \vec{p} and \vec{q} be any two points in \mathbb{R}^{3}. Let $\vec{m}=\frac{1}{2}(\vec{p}+\vec{q})$. Using basic properties of vector addition and scalar multiplication, prove that \vec{m} is the midpoint of the line segment between \vec{p} and \vec{q}. [Hint: Compare the vector $\vec{p}-\vec{m}$ to the vector $\vec{q}-\vec{m}$. And draw a picture!]
6. Section $12.2 \# 51$.
7. Section $12.2 \# 7$.
8. In any given year, a company's revenue is its income - that is, the amount of money that it pulls in. (The profit is the revenue minus the cost.) Let's denote the revenue as r. Notice that r can change from year to year. Now consider an industry made up of two companies with revenues r_{1} and r_{2} respectively. The overall state of the system can be represented as a vector $\vec{r}=\left\langle r_{1}, r_{2}\right\rangle$ pointing to the point $\left(r_{1}, r_{2}\right)$ in the first quadrant of \mathbb{R}^{2}. Here are four questions.
(a) If the two companies are competing for the same fixed pool of consumers, then how might \vec{r} vary over time? Draw a picture and briefly explain.
(b) On the other hand, if the two companies are in cooperation - for example, one supplies the other with materials - then how might \vec{r} vary over time?
(c) Re-do those first two questions for the case where there are three companies.
(d) What if there are n companies, where $n=100$, say?

If you feel that you need more practice with this foundational vector material, then do more problems from the book, or come talk to me. :)

