- 1. Section 13.1 #6.
- 2. Section 13.2 #26.
- 3. Section 13.2 #36.
- 4. Section 13.2 #42.
- 5. Section 13.2 #47.
- 6. Section 13.2 # 53.
- 7. Section 13.2 # 59.
- 8. Differentiate $|\vec{r}(t)|^2$ in two different ways, to derive an expression for $|\vec{r}|'$ in terms of $|\vec{r}'|$ and the cosine of a certain angle. Use this result to give an example where $|\vec{r}|' \neq |\vec{r}'|$.
- 9. Recall from an earlier class that a particle moving with velocity \vec{v} in a uniform magnetic field \vec{B} experiences force $\vec{F} = c\vec{v} \times \vec{B}$, where $c \neq 0$ is some constant of proportionality (which depends on the magnetic properties of the particle). You might also know that $\vec{F} = m\vec{a}$, where m > 0 is the particle's constant mass and \vec{a} is the particle's acceleration. Let $\vec{x} : \mathbb{R} \to \mathbb{R}^3$ be the particle's trajectory through space. In other words, its position at time t is $\vec{x}(t)$.
 - (a) Summarize this whole situation as a differential equation in \vec{x} . (A differential equation is an equation involving an unknown function and its derivatives in this case, one or more of \vec{x} , \vec{x}' , etc.)
 - (b) Now focus on the case where $\vec{B} = \langle 0, 0, 1 \rangle$. Write the differential equation explicitly in terms of x_1, x_2, x_3 , and their derivatives.
 - (c) Continuing in the case where $\vec{B} = \langle 0, 0, 1 \rangle$, find a solution \vec{x} . (Hint: It's probably easier to figure out what \vec{x}' is, and then to figure out \vec{x} from that. Also, if you're lost, try combinations of sines and cosines.)