1. Section $13.1 \# 6$.
2. Section $13.2 \# 26$.
3. Section $13.2 \# 36$.
4. Section $13.2 \# 42$.
5. Section $13.2 \# 47$.
6. Section $13.2 \# 53$.
7. Section $13.2 \# 59$.
8. Differentiate $|\vec{r}(t)|^{2}$ in two different ways, to derive an expression for $|\vec{r}|^{\prime}$ in terms of $\left|\vec{r}^{\prime}\right|$ and the cosine of a certain angle. Use this result to give an example where $|\vec{r}|^{\prime} \neq\left|\vec{r}^{\prime}\right|$.
9. Recall from an earlier class that a particle moving with velocity \vec{v} in a uniform magnetic field \vec{B} experiences force $\vec{F}=c \vec{v} \times \vec{B}$, where $c \neq 0$ is some constant of proportionality (which depends on the magnetic properties of the particle). You might also know that $\vec{F}=m \vec{a}$, where $m>0$ is the particle's constant mass and \vec{a} is the particle's acceleration. Let $\vec{x}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be the particle's trajectory through space. In other words, its position at time t is $\vec{x}(t)$.
(a) Summarize this whole situation as a differential equation in \vec{x}. (A differential equation is an equation involving an unknown function and its derivatives in this case, one or more of $\vec{x}, \vec{x}^{\prime}, \vec{x}^{\prime \prime}$, etc.)
(b) Now focus on the case where $\vec{B}=\langle 0,0,1\rangle$. Write the differential equation explicitly in terms of x_{1}, x_{2}, x_{3}, and their derivatives.
(c) Continuing in the case where $\vec{B}=\langle 0,0,1\rangle$, find a solution \vec{x}. (Hint: It's probably easier to figure out what \vec{x}^{\prime} is, and then to figure out \vec{x} from that. Also, if you're lost, try combinations of sines and cosines.)
