Section $15.4 \# 3,17,18,29,30$.
Section $15.6 \# 2$.
For the last problem of this assignment, recall that we used the Mathematica notebook integration.nb on Day 15 of the course. The notebook ends with the example of

$$
\iint_{R} \frac{x-y}{x^{3}+y^{3}} d A
$$

where $R=[0,1] \times[0,1]$.
A. What does Mathematica give for the value of the integral, computed in the $d x d y$ order and in the $d y d x$ order?
B. By mimicking how I used the integrate (not Integrate!) function in earlier examples, compute a Riemann sum approximation to the integral. You might want to try a couple of values for n. Show the line(s) of code that you used and the result(s).
C. Explain how these results relate to Fubini's theorem.

What follows is a bonus problem. You are not required to hand it in, and it will not be graded, but it might help you study.

Richard Feynman (1918-1988) was one of the most successful (and colorful, and controversial) physicists of the 20th century. In his memoirs, he gleefully revealed his favorite mathematical trick: "differentiation under the integral sign". Basically, it amounts to pushing a differentiation with respect to one variable into an integral with respect to a different variable:

$$
\frac{d}{d x} \int_{a}^{b} f(x, y) d y=\int_{a}^{b} \frac{\partial}{\partial x} f(x, y) d y
$$

That's the backstory. Now here's your problem. Let

$$
I(a)=\int_{0}^{\infty} \frac{e^{-x}-e^{-a x}}{x} d x
$$

Show that $I(a)=\log a$ (meaning the natural logarithm).

