Section $16.3 \# 3,4,5,8$. (Yes, I mean Section 16.3.)
Section $16.2 \# 1,3$, 11. (Yes, I mean Section 16.2.)

For this final, multi-part problem, let D be the set of points in the plane other than the origin:

$$
D=\{(x, y): x \neq 0 \text { or } y \neq 0\} .
$$

Also let

$$
\vec{F}(x, y)=\langle P(x, y), Q(x, y)\rangle=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle .
$$

Notice that \vec{F} is defined on all of D.
A. Show that $\frac{\partial}{\partial y} P=\frac{\partial}{\partial x} Q$ everywhere on D.
B. Find all potential functions for \vec{F} on the part of D where $x>0$. Your answer should involve an unknown constant C_{1}. (Hint: Consider something like $\arctan (y / x)$ or $\arctan (-x / y)$.
C. Find all potential functions for \vec{F} on the part of D where $y>0$. Your answer should involve a C_{2}.
D. Find all potential functions for \vec{F} on the part of D where $x<0$, using a C_{3}.
E. Find all potential functions for \vec{F} on the part of D where $y<0$, using a C_{4}.
F. Explain why there is no potential function for \vec{F} on all of D. (Hint: If such a function existed, then what would its values be at the four points $(x, y)=(\pm 1, \pm 1)$?)

