Section $16.2 \# 19,20,21,23,41,44,45,51$.
Section $16.3 \# 12,15,16,25,28$.

For this final problem, let D be the set of points in the plane other than the origin:

$$
D=\{(x, y): x \neq 0 \text { or } y \neq 0\} .
$$

Let

$$
\vec{F}=\langle P(x, y), Q(x, y)\rangle=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle .
$$

Recall from earlier homework that \vec{F} is defined on all of D, and $\frac{\partial}{\partial y} F_{1}=\frac{\partial}{\partial x} F_{2}$ everywhere on D, but \vec{F} is not conservative on D. Let C be the circle of radius 1 centered at the origin, parametrized counterclockwise.

Problem: Compute the line integral of \vec{F} along C. Can you conclude, from this calculation, that \vec{F} is not conservative?

