
Gradient, Curl, Divergence Math 211, Fall 2021

1 Definitions

Recall that, if f : R3 → R is a scalar field on R3, then the gradient of f is the vector field

grad f = ∇f =

〈
∂f

∂x1
,
∂f

∂x2
,
∂f

∂x3

〉
on R3. Now suppose that ~F : R3 → R3 is a vector field on R3. We define the curl of ~F to be

the vector field

curl ~F =

〈
∂F3

∂x2
− ∂F2

∂x3
,
∂F1

∂x3
− ∂F3

∂x1
,
∂F2

∂x1
− ∂F1

∂x2

〉
and the divergence of ~F to be the scalar field

div ~F =
∂F1

∂x1
+

∂F2

∂x2
+

∂F3

∂x3
.

Here’s a helpful mnemonic device. Define the “vector” ∇ to be

∇ =

〈
∂

∂x1
,

∂

∂x2
,

∂

∂x3

〉
.

I put “vector” in quotation marks because this thing is not a vector — or at least not a vector of

any kind that we’ve studied. If you ignore such philosophical scruples and compute blindly, then

you discover that the gradient ∇f is indeed the vector ∇ scaled on the right by the scalar-valued

thing f :

∇f =

〈
∂

∂x1
,

∂

∂x2
,

∂

∂x3

〉
f =

〈
∂f

∂x1
,
∂f

∂x2
,
∂f

∂x3

〉
.

Moreover, you discover that the curl and divergence are cross and dot products:

curl ~F = ∇× ~F , div ~F = ∇ · ~F .

The curl and divergence are frequently written in this notation, so get used to it.

Each of these concepts has a geometric meaning. The gradient ∇f tells you, at each ~x, how

to climb the hill defined by f as quickly as possible there. The curl ∇× ~F tells you, at each ~x,

how much ~F rotates or curls there. The divergence ∇· ~F tells you, at each ~x, whether ~F spreads

out or comes together there. See the companion Mathematica notebook.

These concepts also have many applications. For example, almost everything that we en-

counter in daily life is a consequence of electromagnetism, which (in its pre-quantum theory)

is governed by Maxwell’s equations. In the simplest conditions, these equations relate a time-

dependent vector field ~E for electricity and a time-dependent vector field ~H for magnetism as

follows.

div ~E = 0, div ~H = 0, curl ~E = − ∂

∂t
~H, curl ~H =

∂

∂t
~E.
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2 In other dimensions

The gradient and the divergence generalize simply to all dimensions. In n dimensions, define

∇ =

〈
∂

∂x1
, . . . ,

∂

∂xn

〉
.

If f : Rn → R is a scalar field and ~F : Rn → Rn is a vector field, then define

grad f = ∇f =

〈
∂f

∂x1
, . . . ,

∂f

∂xn

〉
, div ~F = ∇ · ~F =

∂F1

∂x1
+ · · ·+ ∂Fn

∂xn
.

The composition of the divergence and the gradient is another operation, called the Laplacian,

which we haven’t discussed yet. It has various popular notations:

∆f = ∇2f = ∇ · (∇f) = div(grad f) =
∂2F1

∂x21
+ · · ·+ ∂2Fn

∂x2n
.

To clarify, the Laplacian of a scalar field f is a scalar field ∆f . The Laplacian arises in math-

ematical models of heat conduction, fluid dynamics, groundwater diffusion, and other scientific

problems. The two-dimensional version plays a prominent role in complex analysis (calculus

with complex numbers).

The curl does not generalize to all dimensions, because it is related to the cross product,

which is specific to three dimensions. However, people sometimes talk about the curl of a

two-dimensional vector field ~F (x1, x2) = 〈F1(x1, x2), F2(x1, x2)〉 by regarding it as a three-

dimensional vector field ~G with nothing happening in the third dimension:

~G(x1, x2, x3) = 〈F1(x1, x2), F2(x1, x2), 0〉.

If you interpret the two-dimensional ~F as a three-dimensional ~G in this way, then you can

compute

curl ~F = curl ~G =

〈
0, 0,

∂F2

∂x1
− ∂F1

∂x2

〉
.

The first two components of curl ~F are ultra-boring, but the third component of curl ~F is ripe

with meaning. In which big theorem have you seen it? And when have you seen it equal zero?

3 de Rham cohomology

Let’s return to three dimensions specifically. Let S be the set of all scalar fields f : R3 → R
that are smooth — meaning, every derivative that you can imagine, such as fx1x3x3x2x1x1x1x2x2 ,

is continuous. Let V be the set of all vector fields ~F : R3 → R3 that are smooth in each of the

three components. Then the gradient, curl, and divergence fit into this diagram of functions:

S grad−−−→ V curl−−→ V div−−→ S.
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In other words, the gradient of a smooth scalar field is a smooth vector field, the curl of a smooth

vector field is a smooth vector field, and the divergence of a smooth vector field is a smooth

scalar field.

Now here’s an important fact: For any scalar field f , curl(grad f) = ~0. (Prove so alge-

braically. See the companion Mathematica notebook to compute concrete examples.) So if

~F = grad f , then curl ~F = ~0. In other words, if curl ~F 6= ~0, then ~F is not conservative.

Here’s another important fact: For any vector field ~F , div(curl ~F ) = 0. (Prove so alge-

braically, or visit the Mathematica notebook.) In other words, if div ~G 6= 0, then ~G is not the

curl of any vector field ~F .

Are the converses to these statements true? If ~F has curl ~0, then must ~F be conservative?

If ~G has divergence 0, then must ~G be a curl? Also, if f has gradient ~0, then what does that

say about f? The answers depend on whether there are holes in the domains of f , ~F , and ~G.

A “point hole” in the domain of ~G allows for the possibility that div ~G = 0 but ~G 6= curl ~F .

The crucial example is ~G = ~x/ |~x|3/2 (or any scalar multiple of the Newtonian gravitational force

field). It is undefined at the point ~0. Everywhere else, its divergence is 0. However, there is no

~F defined everywhere ~G is defined, such that curl ~F = ~G. (Briefly, the argument is: The flux

of ~G across the unit sphere is positive, but the flux of curl ~F must be 0 by Stokes’s theorem

below.)

A “line hole” in the domain of ~F allows for the possibility that curl ~F = ~0 but ~F 6= grad f .

The crucial example is ~F = 〈−x2, x1, 0〉/(x21 + x22). This vector field is undefined along the

line x1 = x2 = 0. Everywhere else, its curl is ~0. We studied the two-dimensional version in

homework.

A “plane hole” in the domain of f allows for the possibility that grad f = ~0 but f is not

constant. For example, define {
f(~x) = 31 if x3 > 0

f(~x) = −4 if x3 < 0
.

This scalar field is undefined along the plane x3 = 0. Everywhere else, its gradient is ~0.

In summary, the existence of divergence-0 vector fields that are not curls, curl-~0 vector fields

that are not gradients, or gradient-~0 scalar fields that are not constant tells us something about

the holes in the underlying domain. There is an interplay between delicate, finicky questions

of calculus and simple, crude questions of topology (how spaces connect up on themselves). In

higher mathematics, these ideas get systematized in a concept called de Rham cohomology.

4 Stokes’s theorem

The table below summarizes five big theorems of calculus, three of which we have studied.
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dimension straight version curved version

1
∫
[a,b] F

′(x1) dx1 = F (b) +−F (a).
∫
C ∇f · d~x = f(~x(b)) +−f(~x(a)).

2
∫∫

D
∂F2
∂x1
− ∂F1

∂x2
dx1 dx2 =

∫
C
~F · d~x.

∫∫
S curl ~F · d~S =

∫
C
~F · d~x.

3
∫∫∫

E div ~G dx1 dx2 dx3 =
∫∫

S
~G · d~S.

The upper-left theorem is the fundamental theorem of calculus. The upper-right theorem is

the fundamental theorem of calculus for line integrals. Both the interval [a, b] and the curve C

are one-dimensional. The interval [a, b] is essentially a curve C that happens to be straight.

The middle row of the table features Green’s theorem on the left and Stokes’s theorem

(Section 16.8) on the right. Both the planar region D and the surface S are two-dimensional.

The planar region D is essentially a surface S that happens to be straight.

The third row of the table features the divergence theorem (Section 16.9) on the left. It

concerns an integral over a solid three-dimensional region E, and another integral over the

surface S that bounds E. The right side of the third row is left blank, because the corresponding

theorem over three-dimensional “curved solids” is rarely taught in calculus courses.

All five theorems listed in the table follow a single pattern. In each equation, the right

integrand is a function, and the left integrand is some kind of derivative of that function. In

each equation, the left integral is over an n-dimensional space, and the right integral is over its

(n− 1)-dimensional boundary. (The boundary of a one-dimensional space is a zero-dimensional

space, which is a set of discrete points. Those points are assigned positive and negative signs

according to a certain rule. An integral over a set of discrete points is simply a sum.)

The table doesn’t end at three dimensions. There is a way to systematize everything that

we’ve learned, so that it extends to curved (or straight) spaces of all dimensions. The integrand

and the dx1 dx2 . . . get combined into an object called a differential form, denoted something

like ω. A general derivative of this ω, denoted dω, can be rigorously defined. The boundary of a

space X is denoted ∂X. Then, under appropriate conditions, we obtain a single, grand Stokes’s

theorem that works in all dimensions: ∫
X
dω =

∫
∂X

ω.

We can’t possibly learn all of this stuff in Math 211. Sometimes it’s taught in the special

topics course Math 295. Sometimes comps projects are done on it. I first learned it in math-

ematics graduate school. So why do I mention it in Math 211? To emphasize that there is a

pattern to the five theorems. To give you a hint that, if you go on in mathematics, you will find

the subject getting more abstract but, surprisingly, simpler.
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