To optimize $f(x, y)$ subject to the constraint that $g(x, y)=c$, examine all points (x, y) along $g(x, y)=c$ such that ∇f is parallel to ∇g. In other words, do these two tasks:

Examine all (x, y) where $g(x, y)=c$ and $\nabla g(x, y)=\overrightarrow{0}$.
Examine all (x, y, λ) such that $g(x, y)=c$ and $\nabla f(x, y)=\lambda \nabla g(x, y)$.
Problem A: Optimize $f(x, y)=e^{x y}$ subject to $x^{3}+y^{3}=16$.
Problem B: Optimize $f(x, y)=x$ subject to $y^{2}+x^{4}-x^{3}=0$.
To optimize $f(x, y, z)$ subject to the constraint that $g(x, y, z)=c$, examine all points (x, y, z) along $g(x, y, z)=c$ such that ∇f is parallel to ∇g. In other words:

Examine all (x, y, z) where $g(x, y, z)=c$ and $\nabla g(x, y, z)=\overrightarrow{0}$.
Examine all (x, y, z, λ) such that $g(x, y, z)=c$ and $\nabla f(x, y, z)=\lambda \nabla g(x, y, z)$.
Problem C: Find the points on the unit sphere $x^{2}+y^{2}+z^{2}=1$ that are closest to and farthest from the point $(3,2,1)$. Use Lagrange multipliers, and then check your answer using a simpler argument involving vectors.

To optimize $f(x, y, z)$ subject to the constraints that $g(x, y, z)=c$ and $h(x, y, z)=d$:
Examine all (x, y, z) where $g=c, h=d$, and ∇g is parallel to ∇h.
Examine all (x, y, z, λ, μ) where $g=c, h=d$, and $\nabla f=\lambda \nabla g+\mu \nabla h$.
Problem D: Optimize $f(x, y, z)=x+2 y+3 z$ on the intersection of the cylinder $x^{2}+y^{2}=1$ and the plane $x-y+z=1$.

Problem E: Do problem D in a different way, from earlier in our course: Parametrize the ellipse where the two constraints meet, to get x, y, and z as functions of t. Then optimize f as a function of t. Do you get the same answer?

