Definition: The point (a, b) is a critical point of the function $f(x, y)$ if two conditions are satisfied: $f_{x}(a, b)$ is zero or non-existent, and $f_{y}(a, b)$ is zero or non-existent.

Theorem: If f has a local optimum at (a, b), then (a, b) is a critical point.
Definition: The discriminant of f is $D=f_{x x} f_{y y}-f_{x y} f_{y x}$.
Theorem (Second Derivative Test): Suppose that (a, b) is a critical point of f, and $f_{x x}, f_{y y}, f_{x y}, f_{y x}$ are all continuous at (a, b). Then:
A. If $D(a, b)>0$ and $f_{x x}(a, b)>0$, then (a, b) is a local minimum.
B. If $D(a, b)>0$ and $f_{x x}(a, b)<0$, then (a, b) is a local maximum.
C. If $D(a, b)<0$, then (a, b) is a saddle.
D. (If $D(a, b)=0$, then the test is inconclusive.)

Theorem: If f is continuous on a closed, bounded region R, then f achieves a global maximum and a global minimum on R, and they occur at the critical points of f or at the boundary of R.

Problem A: In each sub-problem, find the critical points. Characterize them as minima, maxima, saddles, or unknown.

1. $f(x, y)=x^{2}+y^{2}$. Draw a picture.
2. $f(x, y)=x^{4}+y^{4}$. Draw a picture.
3. $f(x, y)=x^{2}-12 x y+y$.
4. $f(x, y)=x^{2}$. Draw a picture.
5. $f(x, y)=3 x y^{2}-x^{3}$. By the way, this surface is called the monkey saddle.

Problem B: The nose of a rocket is shaped like the region bounded by the plane $z=0$ and the paraboloid $z=1-x^{2}-y^{2}$. Scientists are trying to equip the rocket with a box-shaped instrument. They'd like the instrument to have the largest volume possible, subject to the constraint that it must fit into the nose. What's the solution?

